Implications of Uncertainty for Optimal Policies

Cornell

Todd Lensman Maxim Troshkin Cornell

December, 2018

This project is about:

Mutual implications between:

• Optimal dynamic policy

(friction-constrained, information or/and no-commitment)

• Broader view of uncertainty

(Knightian/model/belief uncertainty and risk, aversion to both)

Recent empirical evidence:

- Pre-tax income distributions change significantly, often (e.g. Piketty, Rees-Jones, Saez, Taubinsky, Zuckman, ..)
- People uncertain enough to "leave money on the table" (e.g. Aghion, Akcigit, Chetty, Gruber, Lequien, Stantcheva, ..)

Recent empirical evidence:

- Pre-tax income distributions change significantly, often (e.g. Piketty, Rees-Jones, Saez, Taubinsky, Zuckman, ..)
- People uncertain enough to "leave money on the table" (e.g. Aghion, Akcigit, Chetty, Gruber, Lequien, Stantcheva, ..)

Uncertainty in macro / finance:

• Significant explanatory power for economic aggregates (e.g. Bianchi, Borovička, Epstein, Hansen, Ilut, Sargent, Schneider, ...)

Recent empirical evidence:

- Pre-tax income distributions change significantly, often (e.g. Piketty, Rees-Jones, Saez, Taubinsky, Zuckman, ..)
- People uncertain enough to "leave money on the table" (e.g. Aghion, Akcigit, Chetty, Gruber, Lequien, Stantcheva, ..)

Uncertainty in macro / finance:

• Significant explanatory power for economic aggregates (e.g. Bianchi, Borovička, Epstein, Hansen, Ilut, Sargent, Schneider, ...)

Implications for optimal policies?

• Robust to imperfect knowledge of data-generating process?

Optimal policies with certainty about data-generating process:

- once-and-forever (full re-optimize after surprise)
- history-dependent, complex
- complete

Optimal policies with certainty about data-generating process:

- once-and-forever (full re-optimize after surprise)
- history-dependent, complex
- complete

Commonly-observed policies:

- reformed periodically (especially taxes)
- often do not dependent on full history
- at least somewhat incomplete

Optimal policies with certainty about data-generating process:

- once-and-forever (full re-optimize after surprise)
- history-dependent, complex
- complete

Commonly-observed policies:

- reformed periodically (especially taxes)
- often do not dependent on full history
- at least somewhat incomplete

Can be optimal?

• Show they can under uncertainty

Periodically reformed policies are optimal mechanism: uncertainty ≈ endogenous no-commitment

- Periodically reformed policies are optimal mechanism: uncertainty ≈ endogenous no-commitment
 - even with full commitment, information symmetry
 - extends to private beliefs, private skills, exogenous no-commitment

- Periodically reformed policies are optimal mechanism: uncertainty ≈ endogenous no-commitment
 - even with full commitment, information symmetry
 - extends to private beliefs, private skills, exogenous no-commitment
- Loss of history dependence *mechanism*: promise-keeping slack after reform

- Periodically reformed policies are optimal mechanism: uncertainty ≈ endogenous no-commitment
 - even with full commitment, information symmetry
 - extends to private beliefs, private skills, exogenous no-commitment
- Loss of history dependence mechanism: promise-keeping slack after reform
 - simplified (incomplete) policies more generally
 - if $T < \infty$: no full backward induction for promise utility
 - if linear policies: generically not optimal

- Periodically reformed policies are optimal mechanism: uncertainty ≈ endogenous no-commitment
 - even with full commitment, information symmetry
 - extends to private beliefs, private skills, exogenous no-commitment
- Loss of history dependence mechanism: promise-keeping slack after reform
 - simplified (incomplete) policies more generally
 - if $T < \infty$: no full backward induction for promise utility
 - if linear policies: generically not optimal
- Meaningful role for macro interventions mechanism: uncertainty + private info ⇒ CE not efficient

- Periodically reformed policies are optimal mechanism: uncertainty ≈ endogenous no-commitment
 - even with full commitment, information symmetry
 - extends to private beliefs, private skills, exogenous no-commitment
- Loss of history dependence mechanism: promise-keeping slack after reform
 - simplified (incomplete) policies more generally
 - if $T < \infty$: no full backward induction for promise utility
 - if linear policies: generically not optimal
- Meaningful role for macro interventions mechanism: uncertainty + private info ⇒ CE not efficient
 - gov't policies not simply crowding out private insurance (contrast: macro policies in the presence of moral hazard)

Uncertainty as friction: baseline setup

- Time: t = 0, ..., T
- Agents: *i* = 1, ..., *N*
- Idiosyncratic shocks s_{i,t} : unknowable finite stochastic process

- Time: t = 0, ..., T
- Agents: *i* = 1, . . . , *N*
- Idiosyncratic shocks s_{i,t} : unknowable finite stochastic process

$$s_{i,t} \equiv (\theta_{i,t}, \Pi_{i,t+1})$$
 :

- skills $\theta_{i,t}$: effective labor $z_{i,t} = \theta_{i,t} I_{i,t}$
- beliefs $\Pi_{i,t+1}$: set of distributions over s^{t+1}

- Time: t = 0, ..., T
- Agents: *i* = 1, . . . , *N*
- Idiosyncratic shocks s_{i,t} : unknowable finite stochastic process

$$s_{i,t} \equiv (\theta_{i,t}, \Pi_{i,t+1})$$
 :

- skills $\theta_{i,t}$: effective labor $z_{i,t} = \theta_{i,t}I_{i,t}$
- beliefs Π_{i,t+1} : set of distributions over s^{t+1}
 (agnostic about updating/learning: for simplicity Π in s)

- Time: t = 0, ..., T
- Agents: *i* = 1, ..., *N*
- Idiosyncratic shocks s_{i,t} : unknowable finite stochastic process

$$s_{i,t} \equiv (\theta_{i,t}, \Pi_{i,t+1})$$
 :

- skills $\theta_{i,t}$: effective labor $z_{i,t} = \theta_{i,t}I_{i,t}$
- beliefs Π_{i,t+1} : set of distributions over s^{t+1}
 (agnostic about updating/learning: for simplicity Π in s)
- Allocation: $C \equiv \left\{c_t\left(s^t\right), z_t\left(s^t\right), k_{t+1}\left(s^t\right)\right\}_{t=0}^{T}$

Aversion to risk and uncertainty

Assume recursive utility:

$$U_{i,t}(C|s^{t}) \equiv u\left(c_{i,t}(s^{t}), \frac{z_{i,t}(s^{t})}{\theta_{i,t}}\right) + \beta \inf_{\Pi_{i,t+1}} \mathbb{E}_{\pi_{i,t+1}}\left[U_{i,t+1}(C|s^{t+1})|s^{t}\right]$$

•
$$\pi_{i,t+1} \in \Pi_{i,t+1}$$
, $\beta \in (0,1)$, $-u_c$, $u_l < 0$, u_{cc} , $u_{ll} \le 0$

Aversion to risk and uncertainty

Assume recursive utility:

$$U_{i,t}(C|s^{t}) \equiv u\left(c_{i,t}(s^{t}), \frac{z_{i,t}(s^{t})}{\theta_{i,t}}\right) + \beta \inf_{\Pi_{i,t+1}} \mathbb{E}_{\pi_{i,t+1}}\left[U_{i,t+1}(C|s^{t+1})|s^{t}\right]$$

- $\pi_{i,t+1} \in \Pi_{i,t+1}, \ \beta \in (0,1), \ -u_c, \ u_l < 0, \ u_{cc}, \ u_{ll} \leq 0$
- Axiomatization, recursive representation: Epstein-Schneider(2003)

Aversion to risk and uncertainty

Assume recursive utility:

$$U_{i,t}(C|s^{t}) \equiv u\left(c_{i,t}(s^{t}), \frac{z_{i,t}(s^{t})}{\theta_{i,t}}\right) + \beta \inf_{\Pi_{i,t+1}} \mathbb{E}_{\pi_{i,t+1}}\left[U_{i,t+1}(C|s^{t+1})|s^{t}\right]$$

- $\pi_{i,t+1} \in \Pi_{i,t+1}, \ \beta \in (0,1), \ -u_c, u_l < 0, \ u_{cc}, u_{ll} \leq 0$
- Axiomatization, recursive representation: Epstein-Schneider(2003)

Results more general:

- dynamic Uncertainty Averse Preferences (Cerreia-Vioglio, Maccheroni, Marinacci, Montrucchio 2011)
- ..and nested representations
 - (e.g. Multiplier / Model Uncertainty, Hansen-Sargent 2001)
 - (e.g. Variational, Maccheroni, Marinacci, Rustichini 2006)
 - (e.g. Smooth Ambiguity, Klibanoff, Marinacci, Mukerji 2005)

(start with symmetric information, full commitment)

(start with symmetric information, full commitment)

• C^* is *efficient* given Pareto weights η_i if

$$C^{*}\left(s_{0}\right) \in \arg\max_{C}\sum_{i}U_{i,0}\left(\left.C\right|s_{0}\right)\eta_{i}$$

s.t. non-negativity and feasibility:

$$\sum_{i} c_{i,t}\left(s^{t}\right) + \mathcal{K}_{t+1}\left(s^{t}\right) \leq f\left(\mathcal{K}_{t}\left(s^{t-1}\right), Z_{t}\left(s^{t}\right)\right), \ \forall t, s^{t} \geq s^{0}$$

(start with symmetric information, full commitment)

• C^* is *efficient* given Pareto weights η_i if

$$C^{*}\left(s_{0}\right) \in \arg\max_{C}\sum_{i}U_{i,0}\left(\left.C\right|s_{0}\right)\eta_{i}$$

s.t. non-negativity and feasibility:

$$\sum_{i} c_{i,t}\left(s^{t}\right) + K_{t+1}\left(s^{t}\right) \leq f\left(K_{t}\left(s^{t-1}\right), Z_{t}\left(s^{t}\right)\right), \ \forall t, s^{t} \geq s^{0}$$

• ex-post feasibility reflects (heterogeneous) uncertainty

(start with symmetric information, full commitment)

• C^* is *efficient* given Pareto weights η_i if

$$C^{*}\left(s_{0}\right) \in \arg\max_{C}\sum_{i}U_{i,0}\left(\left.C\right|s_{0}\right)\eta_{i}$$

s.t. non-negativity and feasibility:

$$\sum_{i} c_{i,t}\left(s^{t}\right) + K_{t+1}\left(s^{t}\right) \leq f\left(K_{t}\left(s^{t-1}\right), Z_{t}\left(s^{t}\right)\right), \ \forall t, s^{t} \geq s^{0}$$

- ex-post feasibility reflects (heterogeneous) uncertainty
- government knows no more than agents

(start with symmetric information, full commitment)

• C^* is *efficient* given Pareto weights η_i if

$$C^{*}\left(s_{0}\right) \in \arg\max_{C}\sum_{i}U_{i,0}\left(\left.C\right|s_{0}\right)\eta_{i}$$

s.t. non-negativity and feasibility:

$$\sum_{i} c_{i,t}\left(s^{t}\right) + K_{t+1}\left(s^{t}\right) \leq f\left(K_{t}\left(s^{t-1}\right), Z_{t}\left(s^{t}\right)\right), \ \forall t, s^{t} \geq s^{0}$$

- ex-post feasibility reflects (heterogeneous) uncertainty
- government knows no more than agents

• C*: once-and-forever, typically history dependent, complex

Periodic reforms

..to agree on a feasible path

..to agree on a feasible path

• Obvious example: economy's "worst" path

• skills:
$$\theta_{i,t} = \underline{\theta}$$

• beliefs: $\underline{\Pi}_{t+1} \equiv \{\underline{\pi}_{t+1}\}$, unit weight on $\theta_{i,t+1} = \underline{\theta}$

..to agree on a feasible path

- Obvious example: economy's "worst" path
 - skills: $\theta_{i,t} = \underline{\theta}$
 - beliefs: $\underline{\Pi}_{t+1} \equiv \{\underline{\pi}_{t+1}\}$, unit weight on $\theta_{i,t+1} = \underline{\theta}$
- Assumption 1: For any belief $\pi_{i,t+1}$, there is $\pi'_{i,t+1}$:
 - with same marginal distribution of θ (conditional on s^t)
 - but under π' marginal of future Π places unit weight on $\underline{\Pi}$

..to agree on a feasible path

- Obvious example: economy's "worst" path
 - skills: $\theta_{i,t} = \underline{\theta}$
 - beliefs: $\underline{\Pi}_{t+1} \equiv \{\underline{\pi}_{t+1}\}$, unit weight on $\theta_{i,t+1} = \underline{\theta}$
- Assumption 1: For any belief $\pi_{i,t+1}$, there is $\pi'_{i,t+1}$:
 - with same marginal distribution of θ (conditional on s^t)
 - but under π' marginal of future Π places unit weight on $\underline{\Pi}$
- Relax significantly: ...weight on intervals instead of worst

Condition on beliefs: Sufficient overlap

..to agree on a feasible path

- Obvious example: economy's "worst" path
 - skills: $\theta_{i,t} = \underline{\theta}$
 - beliefs: $\underline{\Pi}_{t+1} \equiv \{\underline{\pi}_{t+1}\}$, unit weight on $\theta_{i,t+1} = \underline{\theta}$
- Assumption 1: For any belief $\pi_{i,t+1}$, there is $\pi'_{i,t+1}$:
 - with same marginal distribution of θ (conditional on s^t)
 - but under π' marginal of future Π places unit weight on $\underline{\Pi}$
- Relax significantly: ...weight on intervals instead of worst
- Any (heterogeneous) marginals of θ allowed

Condition on beliefs: Sufficient overlap

..to agree on a feasible path

- Obvious example: economy's "worst" path
 - skills: $\theta_{i,t} = \underline{\theta}$
 - beliefs: $\underline{\Pi}_{t+1} \equiv \{\underline{\pi}_{t+1}\}$, unit weight on $\theta_{i,t+1} = \underline{\theta}$
- Assumption 1: For any belief $\pi_{i,t+1}$, there is $\pi'_{i,t+1}$:
 - with same marginal distribution of θ (conditional on s^t)
 - but under π' marginal of future Π places unit weight on $\underline{\Pi}$
- Relax significantly: ...weight on intervals instead of worst
- Any (heterogeneous) marginals of θ allowed
- DGP not required to place weight on worst path

Proposition: Given efficient C^* , there is sequence $\{C^t\}_{t=0}^T$, where $C^t = \{c_{\tau}^t, z_{\tau}^t, k_{\tau+1}^t\}_{\tau=t}^{t+1}$ are incomplete and

$$\begin{aligned} U_{i,0}\left(C^{0} | s^{0}\right) &= U_{i,0}\left(C^{*} | s^{0}\right) \quad \forall i, \\ U_{i,0}\left(C_{0}^{0}, \left(C_{t}^{1}\right)_{t=1}^{T} | s^{0}\right) &\geq U_{i,0}\left(C^{0} | s^{0}\right) \quad \forall i, \\ U_{i,1}\left(C_{1}^{1}, \left(C_{t}^{2}\right)_{t=2}^{T} | s^{1}\right) &\geq U_{i,1}\left(C^{1} | s^{1}\right) \quad \forall i, \end{aligned}$$

Proposition: Given efficient C^* , there is sequence $\{C^t\}_{t=0}^T$, where $C^t = \{c_{\tau}^t, z_{\tau}^t, k_{\tau+1}^t\}_{\tau=t}^{t+1}$ are incomplete and

$$U_{i,0} \left(C^{0} | s^{0} \right) = U_{i,0} \left(C^{*} | s^{0} \right) \quad \forall i,$$

$$U_{i,0} \left(C_{0}^{0}, \left(C_{t}^{1} \right)_{t=1}^{T} | s^{0} \right) \ge U_{i,0} \left(C^{0} | s^{0} \right) \quad \forall i,$$

$$U_{i,1} \left(C_{1}^{1}, \left(C_{t}^{2} \right)_{t=2}^{T} | s^{1} \right) \ge U_{i,1} \left(C^{1} | s^{1} \right) \quad \forall i,$$

Mechanism:

 uncertainty aversion & sufficient belief overlap ⇒ need only t & worst-case t + 1

Proposition: Given efficient C^* , there is sequence $\{C^t\}_{t=0}^T$, where $C^t = \{c_{\tau}^t, z_{\tau}^t, k_{\tau+1}^t\}_{\tau=t}^{t+1}$ are incomplete and

$$U_{i,0} \left(C^{0} | s^{0} \right) = U_{i,0} \left(C^{*} | s^{0} \right) \quad \forall i,$$

$$U_{i,0} \left(C_{0}^{0}, \left(C_{t}^{1} \right)_{t=1}^{T} | s^{0} \right) \ge U_{i,0} \left(C^{0} | s^{0} \right) \quad \forall i,$$

$$U_{i,1} \left(C_{1}^{1}, \left(C_{t}^{2} \right)_{t=2}^{T} | s^{1} \right) \ge U_{i,1} \left(C^{1} | s^{1} \right) \quad \forall i,$$

Mechanism:

- uncertainty aversion & sufficient belief overlap ⇒ need only t & worst-case t + 1
- when worst not realized \Rightarrow reform t + 1 & worst-case t + 2...

Proposition: Given efficient C^* , there is sequence $\{C^t\}_{t=0}^T$, where $C^t = \{c_{\tau}^t, z_{\tau}^t, k_{\tau+1}^t\}_{\tau=t}^{t+1}$ are incomplete and

$$\begin{aligned} U_{i,0}\left(C^{0}|s^{0}\right) &= U_{i,0}\left(C^{*}|s^{0}\right) \quad \forall i, \\ U_{i,0}\left(C_{0}^{0},\left(C_{t}^{1}\right)_{t=1}^{T}|s^{0}\right) \geq U_{i,0}\left(C^{0}|s^{0}\right) \quad \forall i, \\ U_{i,1}\left(C_{1}^{1},\left(C_{t}^{2}\right)_{t=2}^{T}|s^{1}\right) \geq U_{i,1}\left(C^{1}|s^{1}\right) \quad \forall i, \end{aligned}$$

Mechanism:

- uncertainty aversion & sufficient belief overlap ⇒ need only t & worst-case t + 1
- when worst not realized \Rightarrow reform t + 1 & worst-case t + 2...
- generalization of incomplete contract ideas (e.g. Mukerji 1998, Zhu 2016)

• Start
$$C_0^0 = C_0^*$$
,

• Start
$$C_0^0=C_0^st$$
, set C_1^0 to worst-case C_1^st

• Start
$$C_0^0 = C_0^*$$
, set C_1^0 to worst-case C_1^*

• i.e. with $\underline{\Pi}_2$

• Start
$$C_0^0=C_0^st$$
, set C_1^0 to worst-case C_1^st

• i.e. with $\underline{\Pi}_2$

(C^0 not fully state contingent, depends only on s^0 and θ_1)

• Start
$$C_0^0=C_0^st$$
, set C_1^0 to worst-case C_1^st

• i.e. with $\underline{\Pi}_2$ (C^0 not fully state contingent, depends only on s^0 and θ_1)

• At
$$t=0$$
, all agents : $C^*\sim C^0$

• $\inf_{\Pi_{i,1}} \mathbb{E}_{\pi_{i,1}} \left[\left. U_{i,1} \left(. \right) \right| s^0 \right]$ attains if $\pi_{i,1}$ puts all weight on $\underline{\Pi}_2$

• Start
$$C_0^0=C_0^st$$
, set C_1^0 to worst-case C_1^st

- i.e. with $\underline{\Pi}_2$ (C^0 not fully state contingent, depends only on s^0 and θ_1)
- At t = 0, all agents : $C^* \sim C^0$
 - $\inf_{\Pi_{i,1}} \mathbb{E}_{\pi_{i,1}} \left[U_{i,1} \left(. \right) | s^0 \right]$ attains if $\pi_{i,1}$ puts all weight on $\underline{\Pi}_2$
 - sufficient belief overlap \Rightarrow such $\pi_{i,1}$ exist in $\Pi_{i,1}$

• Start
$$C_0^0=C_0^st$$
, set C_1^0 to worst-case C_1^st

- i.e. with $\underline{\Pi}_2$ (C^0 not fully state contingent, depends only on s^0 and θ_1)
- At t=0, all agents : $C^*\sim C^0$
 - $\inf_{\Pi_{i,1}} \mathbb{E}_{\pi_{i,1}} \left[U_{i,1} \left(. \right) | s^0 \right]$ attains if $\pi_{i,1}$ puts all weight on $\underline{\Pi}_2$
 - sufficient belief overlap \Rightarrow such $\pi_{i,1}$ exist in $\Pi_{i,1}$
- At t = 1, if <u>Π</u>₂ not realized: C₁⁰ can be improved to C₁¹ & worst-case C₂¹, and so on..

• Start
$$C_0^0=C_0^st$$
, set C_1^0 to worst-case C_1^st

- i.e. with $\underline{\Pi}_2$ (C^0 not fully state contingent, depends only on s^0 and θ_1)
- At t=0, all agents : $C^*\sim C^0$
 - $\inf_{\Pi_{i,1}} \mathbb{E}_{\pi_{i,1}} \left[U_{i,1} \left(. \right) | s^0 \right]$ attains if $\pi_{i,1}$ puts all weight on $\underline{\Pi}_2$
 - sufficient belief overlap \Rightarrow such $\pi_{i,1}$ exist in $\Pi_{i,1}$
- At t = 1, if <u>Π</u>₂ not realized: C₁⁰ can be improved to C₁¹ & worst-case C₂¹, and so on..
 - C_1^0 still feasible

• Start
$$C_0^0=C_0^st$$
, set C_1^0 to worst-case C_1^st

- i.e. with $\underline{\Pi}_2$ (C^0 not fully state contingent, depends only on s^0 and θ_1)
- At t = 0, all agents : $C^* \sim C^0$
 - $\inf_{\Pi_{i,1}} \mathbb{E}_{\pi_{i,1}} \left[U_{i,1} \left(. \right) | s^0 \right]$ attains if $\pi_{i,1}$ puts all weight on $\underline{\Pi}_2$
 - sufficient belief overlap \Rightarrow such $\pi_{i,1}$ exist in $\Pi_{i,1}$
- At t = 1, if <u>Π</u>₂ not realized: C₁⁰ can be improved to C₁¹ & worst-case C₂¹, and so on..
 - C_1^0 still feasible
 - ...so acts like endogenous outside option (fallback)

Government's reform problem:

Given C^{t-1} , efficient to reform to

$$\mathcal{C}^{t}\left(s^{t}, \mathcal{C}^{t-1}
ight) \in rg\max_{\mathcal{C}^{t}}\sum_{i} \mathcal{U}_{i,t}\left(\left.\mathcal{C}^{t}\right|s^{t}
ight)\eta_{i}$$

Government's reform problem:

Given C^{t-1} , efficient to reform to

$$C^{t}\left(s^{t}, C^{t-1}
ight) \in rg\max_{C^{t}} \sum_{i} U_{i,t}\left(\left.C^{t}\right|s^{t}
ight) \eta_{i}$$

s.t. non-negativity, feasibility au = t, t+1, $s^{ au} \geq s^t$

$$\sum_{i} c_{i,\tau}^{t} \left(\boldsymbol{s}^{\tau} \right) + \mathcal{K}_{\tau+1}^{t} \left(\boldsymbol{s}^{\tau} \right) \leq f \left(\mathcal{K}_{\tau}^{\tau-1} \left(\boldsymbol{s}^{\tau-1} \right), \boldsymbol{Z}_{\tau}^{t} \left(\boldsymbol{s}^{\tau} \right) \right),$$

Government's reform problem:

Given C^{t-1} , efficient to reform to

$$C^{t}\left(s^{t}, C^{t-1}\right) \in \arg\max_{C^{t}} \sum_{i} U_{i,t}\left(\left.C^{t}\right|s^{t}\right) \eta_{i}$$

s.t. non-negativity, feasibility $au = t, t+1, \, s^{ au} \geq s^t$

$$\sum_{i} c_{i,\tau}^{t} \left(\boldsymbol{s}^{\tau} \right) + \mathcal{K}_{\tau+1}^{t} \left(\boldsymbol{s}^{\tau} \right) \leq f \left(\mathcal{K}_{\tau}^{\tau-1} \left(\boldsymbol{s}^{\tau-1} \right), \boldsymbol{Z}_{\tau}^{t} \left(\boldsymbol{s}^{\tau} \right) \right),$$

and promise-keeping $\forall i$

$$U_{i,t-1}\left(\left.C_{t-1}^{t-1},\left(C_{\tau}^{t}\right)_{\tau=t}^{T}\right|s^{t}\right) \geq U_{i,t-1}\left(\left.C_{\tau}^{t-1}\right|s^{t}\right)$$

Government's reform problem:

Government's reform problem:

• simplified algorithm for constructing optimal allocations

Government's reform problem:

- simplified algorithm for constructing optimal allocations
- previous allocation C^{t-1} : fallback option

Government's reform problem:

- simplified algorithm for constructing optimal allocations
- previous allocation C^{t-1} : fallback option
- periodic reforms \approx form of endogenous lack of commitment (on the part of gov't)

Government's reform problem:

- simplified algorithm for constructing optimal allocations
- previous allocation C^{t-1} : fallback option
- **periodic reforms** \approx form of endogenous lack of commitment (on the part of gov't)

Simplified / incomplete C^t :

· limited dependence on future shocks, distributions

Government's reform problem:

- simplified algorithm for constructing optimal allocations
- previous allocation C^{t-1} : fallback option
- **periodic reforms** \approx form of endogenous lack of commitment (on the part of gov't)

Simplified / incomplete C^t :

- limited dependence on future shocks, distributions
- **history dependence** only via promise-keeping (conditioning in beliefs only)

- simplified, more realistic optimal policies
 - reformed periodically, incomplete, not fully history dependent

- simplified, more realistic optimal policies
 - reformed periodically, incomplete, not fully history dependent

- simplified computation of optima
 - no full backward induction

- simplified, more realistic optimal policies
 - reformed periodically, incomplete, not fully history dependent

- simplified computation of optima
 - no full backward induction

- meaningful role for gov't intervention
 - beyond crowding out private insurance

Moving away from certainty about DGP:

- simplified, more realistic optimal policies
 - reformed periodically, incomplete, not fully history dependent

- simplified computation of optima
 - no full backward induction
- meaningful role for gov't intervention
 - beyond crowding out private insurance

...but affine policies generically not optimal

Supplementary Slides

History independence

Proposition: C^t is independent of full history whenever and reform leads to improvement (assume beliefs are Markov)

• i.e. when promise-keeping slack in the gov's reform problem

Proposition: C^t is independent of full history whenever and reform leads to improvement (assume beliefs are Markov)

• i.e. when promise-keeping slack in the gov's reform problem

Example: whenever C^t can be constructed by backward induction

Preferences dynamically consistent in natural sense

Preferences dynamically consistent in natural sense :

• If C, $ilde{C}$ coincide at t and for all $s^{t+1} \geq s^t$

$$U_{i,t}\left(\left.\mathcal{C}\right|s^{t+1}
ight)\leq U_{i,t}\left(\left.\tilde{\mathcal{C}}\right|s^{t+1}
ight)$$
 ,

then

$$U_{i,t}\left(\left.C\right|s^{t}\right) \leq U_{i,t}\left(\left.\tilde{C}\right|s^{t}\right)$$

Preferences dynamically consistent in natural sense :

• If C, $ilde{C}$ coincide at t and for all $s^{t+1} \geq s^t$

$$U_{i,t}\left(\left.\mathcal{C}\right|s^{t+1}
ight)\leq U_{i,t}\left(\left.\tilde{\mathcal{C}}\right|s^{t+1}
ight)$$
 ,

then

$$U_{i,t}\left(\left.C\right|s^{t}\right) \leq U_{i,t}\left(\left.\tilde{C}\right|s^{t}\right)$$

- immediate from recursive rep. of U_{i,t}
- · current beliefs are not allocation dependent

Preferences dynamically consistent in natural sense :

• If C, $ilde{C}$ coincide at t and for all $s^{t+1} \geq s^t$

$$U_{i,t}\left(\left.C\right|s^{t+1}
ight)\leq U_{i,t}\left(\left.\tilde{C}\right|s^{t+1}
ight)$$
,

then

$$U_{i,t}\left(\left.C\right|s^{t}\right) \leq U_{i,t}\left(\left.\tilde{C}\right|s^{t}\right)$$

- immediate from recursive rep. of $U_{i,t}$
- current beliefs are not allocation dependent
- Same notion as:
 - Epstein-Schneider(2003), Maccheroni, Marinacci, Rustichini(2006), Klibanoff, Marinacci, Mukerji(2005), etc.
- Implies:
 - agents can find ex-ante solution by backward induction (weaker/more policy-relevant, e.g. Hansen-Sargent 2001 multiplier)

- Observed state at beginning of t : $\hat{s}^{t-1} = (\hat{\theta}^{t-1}, \hat{\Pi}^t)$
 - t-1 history of skill reports
 - t-1 history of belief reports: $\hat{\Pi}_{i,t}$ reported at t-1

- Observed state at beginning of t : $\hat{s}^{t-1} = (\hat{ heta}^{t-1}, \hat{\Pi}^t)$
 - t-1 history of skill reports
 - t-1 history of belief reports: $\hat{\Pi}_{i,t}$ reported at t-1
- Reporting strategy: $\sigma_i = \{\sigma_{i,t}\}_{t=0}^T$
 - where $\sigma_{i,t}\left(\hat{s}^{t-1}, s_{i}^{t}\right) = \left(\hat{\theta}_{i,t}, \hat{\Pi}_{i,t+1}\right)$
 - truth-telling: σ_i^*

- Observed state at beginning of t : $\hat{s}^{t-1} = (\hat{ heta}^{t-1}, \hat{\Pi}^t)$
 - t-1 history of skill reports
 - t-1 history of belief reports: $\hat{\Pi}_{i,t}$ reported at t-1
- Reporting strategy: $\sigma_i = \{\sigma_{i,t}\}_{t=0}^T$
 - where $\sigma_{i,t}\left(\hat{s}^{t-1}, s_{i}^{t}\right) = \left(\hat{\theta}_{i,t}, \hat{\Pi}_{i,t+1}\right)$
 - truth-telling: σ_i^*
- Revelation Principle holds
 - consider only incentive compatible C:

$$U_{i,0}\left(\left.C\right|s_{i,0}\right)\left(\sigma^{*}\right) \geq U_{i,0}\left(\left.C\right|s_{i,0}\right)\left(\sigma_{i},\sigma_{-i}^{*}\right) \qquad \forall i,\sigma_{i},s_{i,0}$$

...sufficient overlap to agree on a feasible path (as before)

• Private info \Rightarrow beliefs about current state matter now many "worst" beliefs $\underline{\underline{\Pi}}_{i,t+1}$: all place unit weight on $\theta_{j,t+1} = \underline{\theta}$ and $\underline{\underline{\Pi}}_{j,t+1}$, but any marginals over current θ

- Private info \Rightarrow beliefs about current state matter now many "worst" beliefs $\underline{\Pi}_{i,t+1}$: all place unit weight on $\theta_{j,t+1} = \underline{\theta}$ and $\underline{\Pi}_{j,t+1}$, but any marginals over current θ
- Assumption 1': For any belief π_{i,t+1}, there is π'_{i,t+1}:
 - with same marginal distribution of θ (conditional on \hat{s}^{t-1} , s_i^t)
 - but under π' marginal of future Π places unit weight on $\underline{\Pi}$

- Private info \Rightarrow beliefs about current state matter now many "worst" beliefs $\underline{\Pi}_{i,t+1}$: all place unit weight on $\theta_{j,t+1} = \underline{\theta}$ and $\underline{\Pi}_{j,t+1}$, but any marginals over current θ
- Assumption 1': For any belief π_{i,t+1}, there is π'_{i,t+1}:
 - with same marginal distribution of θ (conditional on \hat{s}^{t-1} , s_i^t)
 - but under π' marginal of future Π places unit weight on $\underline{\Pi}$
- Assumption 2: weak monotonicity of allocations

- Private info \Rightarrow beliefs about current state matter now many "worst" beliefs $\underline{\Pi}_{i,t+1}$: all place unit weight on $\theta_{j,t+1} = \underline{\theta}$ and $\underline{\Pi}_{j,t+1}$, but any marginals over current θ
- Assumption 1': For any belief π_{i,t+1}, there is π'_{i,t+1}:
 - with same marginal distribution of θ (conditional on \hat{s}^{t-1} , s_i^t)
 - but under π' marginal of future Π places unit weight on $\underline{\Pi}$
- Assumption 2: weak monotonicity of allocations
 - weakly worse off if all others certain to report $\underline{\theta}$ at t, t+1, ...

...sufficient overlap to agree on a feasible path (as before)

- Private info \Rightarrow beliefs about current state matter now many "worst" beliefs $\underline{\Pi}_{i,t+1}$: all place unit weight on $\theta_{j,t+1} = \underline{\theta}$ and $\underline{\Pi}_{j,t+1}$, but any marginals over current θ
- Assumption 1': For any belief π_{i,t+1}, there is π'_{i,t+1}:
 - with same marginal distribution of θ (conditional on \hat{s}^{t-1} , s_i^t)
 - but under π' marginal of future Π places unit weight on $\underline{\Pi}$
- Assumption 2: weak monotonicity of allocations

• weakly worse off if all others certain to report $\underline{\theta}$ at t, t + 1, ...(resources-worst coincides with subjective continuation-utility-worst)

Incentive compatibility?

Sufficient belief overlap:

• construct C^0 like with public information

•
$$C_0^0 = C_0^*$$
, C_0^1 assumes worst beliefs $\underline{\underline{\Pi}}_{j,2}$ $orall j$

Incentive compatibility?

Sufficient belief overlap:

• construct C^0 like with public information

•
$$C_0^0 = C_0^*$$
, C_0^1 assumes worst beliefs $\underline{\underline{\Pi}}_{j,2}$ $orall j$

Weak monotonicity in C^* :

• only consider worst path when choosing strategy

Incentive compatibility?

Sufficient belief overlap:

• construct C^0 like with public information

•
$$C_0^0 = C_0^*$$
, C_0^1 assumes worst beliefs $\underline{\underline{\Pi}}_{j,2}$ $orall j$

Weak monotonicity in C^* :

only consider worst path when choosing strategy
 ⇒ C⁰ incentive compatible

Reforming

- t = 1: reform to new allocation C^1 if possible
 - s.t. IC, promise-keeping, threat-keeping

Reforming

- t = 1: reform to new allocation C^1 if possible
 - s.t. IC, promise-keeping, threat-keeping
 - if constraint set empty: just keep old C⁰ (+recommend eq'm)

Reforming

- t = 1: reform to new allocation C^1 if possible
 - s.t. IC, promise-keeping, threat-keeping
 - if constraint set empty: just keep old C⁰ (+recommend eq'm)

t = 2: reform to new allocation C^2 if possible ...

Extension:

Exogenous lack of commitment

Extension:

Exogenous lack of commitment

- each agent has outside option $\underline{U}_{i,t}(s_i^t)$
- in government's reform problem:
 - new C^t must also satisfy self-enforcement :

$$U_{i,t}\left(C^{t}|\hat{s}^{t-1},s_{i}^{t}\right)(\sigma^{*}) \geq \underline{U}_{i,t}\left(s_{i}^{t}\right)$$

Inefficiency of competitive equilibria

- Competitive firms, contract one-to-one with agents:
 - buy k_0 , employ $z_{i,t}$, produce $f(k_{i,t}, z_{i,t})$, return $c_{i,t}$

- Competitive firms, contract one-to-one with agents:
 - buy k_0 , employ $z_{i,t}$, produce $f(k_{i,t}, z_{i,t})$, return $c_{i,t}$
 - adopt agents' beliefs $\Pi_{i,t+1}$

- Competitive firms, contract one-to-one with agents:
 - buy k_0 , employ $z_{i,t}$, produce $f(k_{i,t}, z_{i,t})$, return $c_{i,t}$
 - adopt agents' beliefs $\Pi_{i,t+1}$
 - reinterpretation: agents have direct access to *f*, securities markets

- Competitive firms, contract one-to-one with agents:
 - buy k_0 , employ $z_{i,t}$, produce $f(k_{i,t}, z_{i,t})$, return $c_{i,t}$
 - adopt agents' beliefs $\Pi_{i,t+1}$
 - reinterpretation: agents have direct access to *f*, securities markets
- Start: all Arrow-Debreu securities

- Competitive firms, contract one-to-one with agents:
 - buy k_0 , employ $z_{i,t}$, produce $f(k_{i,t}, z_{i,t})$, return $c_{i,t}$
 - adopt agents' beliefs $\prod_{i,t+1}$
 - reinterpretation: agents have direct access to *f*, securities markets
- Start: all Arrow-Debreu securities
- Lemma: Securities contingent on idiosyncratic reports ŝ^t_i not traded in CE

- Competitive firms, contract one-to-one with agents:
 - buy k_0 , employ $z_{i,t}$, produce $f(k_{i,t}, z_{i,t})$, return $c_{i,t}$
 - adopt agents' beliefs $\Pi_{i,t+1}$
 - reinterpretation: agents have direct access to *f*, securities markets
- Start: all Arrow-Debreu securities
- Lemma: Securities contingent on idiosyncratic reports ŝ^t_i not traded in CE
 - immediate from arbitrage vs. risk-free bonds (e.g. Golosov-Tsyvinski 2007)

- Competitive firms, contract one-to-one with agents:
 - buy k_0 , employ $z_{i,t}$, produce $f(k_{i,t}, z_{i,t})$, return $c_{i,t}$
 - adopt agents' beliefs $\Pi_{i,t+1}$
 - reinterpretation: agents have direct access to *f*, securities markets
- Start: all Arrow-Debreu securities
- Lemma: Securities contingent on idiosyncratic reports ŝ^t_i not traded in CE
 - immediate from arbitrage vs. risk-free bonds (e.g. Golosov-Tsyvinski 2007)
- Result 3: CE may not be efficient

Only risk-free bonds in equilibrium

Lemma. Securities contingent on idiosyncratic reports \hat{s}_i^t are not traded in CE.

- Security $a(\hat{s}_i^t)$ pays if agent *i* reports \hat{s}_i^t
- Suppose $a(\hat{s}_i^t)$ costs strictly less than risk-free bond:
 - *i* buys $\infty a(\hat{s}_i^t)$ and sells ∞ risk-free bonds, reports \hat{s}_i^t at *t*
 - *i* nets ∞ profit, sellers of $a(\hat{s}_i^t)$ guaranteed to lose $\rightarrow \leftarrow$
- \Rightarrow only risk-free bonds traded in CE

Example: CE inefficiency

$$N = 2$$
: $\Pi_{A,1} = \{ \underline{\pi}_{A,1}, \bar{\pi}_{A,1} \}, \ \Pi_{B,1} = \{ \bar{\pi}_{B,1} \}$

Example: CE inefficiency

$$N = 2: \Pi_{A,1} = \left\{ \underline{\pi}_{A,1}, \bar{\pi}_{A,1} \right\}, \Pi_{B,1} = \left\{ \bar{\pi}_{B,1} \right\}$$

• under $\underline{\pi}_{\mathcal{A},1}$, at $t \geq 1$ all agents certain to realize $\underline{\theta}$

Example: CE inefficiency

$$N = 2: \ \Pi_{A,1} = \left\{ \underline{\pi}_{A,1}, \, \bar{\pi}_{A,1} \right\}, \ \Pi_{B,1} = \left\{ \bar{\pi}_{B,1} \right\}$$

• under $\underline{\pi}_{A,1}$, at $t \geq 1$ all agents certain to realize $\underline{\theta}$

• also believes other agent realized $\Pi_{B,1} = \{\underline{\pi}_{B,1}, \overline{\pi}_{B,1}\}$

$$N = 2: \ \Pi_{A,1} = \left\{ \underline{\pi}_{A,1}, \, \bar{\pi}_{A,1} \right\}, \ \Pi_{B,1} = \left\{ \bar{\pi}_{B,1} \right\}$$

• under $\underline{\pi}_{\mathcal{A},1}$, at $t \geq 1$ all agents certain to realize $\underline{\theta}$

• also believes other agent realized $\Pi_{B,1} = \{\underline{\pi}_{B,1}, \overline{\pi}_{B,1}\}$

• under $\bar{\pi}_{A,1}$, at $t \geq 1$ all agents certain to realize $\bar{ heta}$

$$N = 2: \ \Pi_{A,1} = \left\{ \underline{\pi}_{A,1}, \, \bar{\pi}_{A,1} \right\}, \ \Pi_{B,1} = \left\{ \bar{\pi}_{B,1} \right\}$$

• under $\underline{\pi}_{\mathcal{A},1}$, at $t \geq 1$ all agents certain to realize $\underline{\theta}$

• also believes other agent realized $\Pi_{B,1} = \{\underline{\pi}_{B,1}, \overline{\pi}_{B,1}\}$

• under $\bar{\pi}_{A,1}$, at $t \geq 1$ all agents certain to realize $\bar{\theta}$

• also believes other agent realized $\Pi_{B,1} = \left\{ \underline{\pi}_{B,1}, \overline{\pi}_{B,1} \right\}$

$$N = 2: \ \Pi_{A,1} = \left\{ \underline{\pi}_{A,1}, \, \bar{\pi}_{A,1} \right\}, \ \Pi_{B,1} = \left\{ \bar{\pi}_{B,1} \right\}$$

• under $\underline{\pi}_{A,1}$, at $t \geq 1$ all agents certain to realize $\underline{\theta}$

• also believes other agent realized $\Pi_{B,1} = \{\underline{\pi}_{B,1}, \overline{\pi}_{B,1}\}$

• under $\bar{\pi}_{A,1}$, at $t \geq 1$ all agents certain to realize $\bar{\theta}$

• also believes other agent realized $\Pi_{B,1} = \left\{ \underline{\pi}_{B,1}, \overline{\pi}_{B,1} \right\}$

Planner:

• would transfer consumption to A when all realize $\underline{\theta}$ at t = 1

Planner:

- would transfer consumption to A when all realize $\underline{\theta}$ at t = 1
- IC satisfied: *B* does not believe *A* will realize $\theta_{A,1} = \underline{\theta}$

Planner:

- would transfer consumption to A when all realize $\underline{\theta}$ at t = 1
- IC satisfied: *B* does not believe *A* will realize $\theta_{A,1} = \underline{\theta}$

CE:

- A would have to insure by purchasing risk-free bond
- \Rightarrow t = 0 instantaneous utility lower than efficient

Planner:

- would transfer consumption to A when all realize $\underline{\theta}$ at t = 1
- IC satisfied: *B* does not believe *A* will realize $\theta_{A,1} = \underline{\theta}$

CE:

- A would have to insure by purchasing risk-free bond
- \Rightarrow t = 0 instantaneous utility lower than efficient

Note: nothing prevents decentralized periodic reforms, history independence, incompleteness

Periodic reforms in equilibrium

• At t = 0, agent *i* solves for fully continent allocation

$$C_{i} = \left\{ c_{i,t}\left(s^{t}\right), z_{i,t}\left(s^{t}\right), k_{i,t+1}\left(s^{t}\right), b_{i,t+1}\left(s^{t-1}\right)
ight\}_{t=0}^{T}$$

• given risk-free bond prices $\{Q(s^t)\}_{t=0}^{T-1}$

Periodic reforms in equilibrium

• At t = 0, agent *i* solves for fully continent allocation

$$C_{i} = \left\{ c_{i,t}\left(s^{t}
ight), z_{i,t}\left(s^{t}
ight), k_{i,t+1}\left(s^{t}
ight), b_{i,t+1}\left(s^{t-1}
ight)
ight\}_{t=0}^{T}$$

• given risk-free bond prices $\{Q(s^t)\}_{t=0}^{T-1}$

Proposition: For any $C = \{C_i\}_{i=1}^N$, there exist incomplete allocations $\{C^t\}_{t=0}^T$ such that

$$U_{i,0}\left(\left.C\right|s_{0}\right)=U_{i,0}\left(\left.C^{0}\right|s_{0}\right) \;\forall i,s_{0}$$

Periodic reforms in equilibrium

• At t = 0, agent *i* solves for fully continent allocation

$$C_{i} = \left\{ c_{i,t}\left(s^{t}
ight), z_{i,t}\left(s^{t}
ight), k_{i,t+1}\left(s^{t}
ight), b_{i,t+1}\left(s^{t-1}
ight)
ight\}_{t=0}^{I}$$

• given risk-free bond prices $\{Q(s^t)\}_{t=0}^{T-1}$

Proposition: For any $C = \{C_i\}_{i=1}^N$, there exist incomplete allocations $\{C^t\}_{t=0}^T$ such that

$$U_{i,0}(C|s_0) = U_{i,0}(C^0|s_0) \ \forall i, s_0$$

• Periodic reforms decentralized: each C^t designed assuming that all agents receive worst beliefs $\underline{\Pi}_{t+2}$ and worst shock $\underline{\theta}$ at $\tau \geq t+2$

Taking simplicity further: Linearity?

- Simplified optimal policies \leftarrow periodic reforms
 - no need for full backward induction, period-at-a-time
 - no need for full history dependence

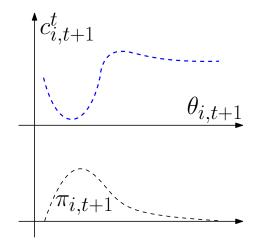
- Simplified optimal policies \leftarrow periodic reforms
 - no need for full backward induction, period-at-a-time
 - no need for full history dependence
- Affine optimal policies?
 - not generically in the sense of fiscal policies

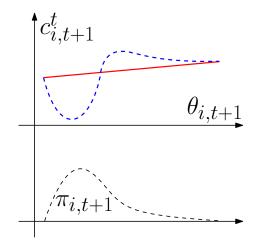
- Simplified optimal policies \leftarrow periodic reforms
 - no need for full backward induction, period-at-a-time
 - no need for full history dependence
- Affine optimal policies?
 - not generically in the sense of fiscal policies
 - unlike in contracting (Carroll 2014, Zhu 2016)

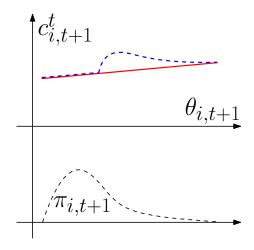
- Simplified optimal policies \leftarrow periodic reforms
 - no need for full backward induction, period-at-a-time
 - no need for full history dependence
- Affine optimal policies?
 - not generically in the sense of fiscal policies
 - unlike in contracting (Carroll 2014, Zhu 2016)

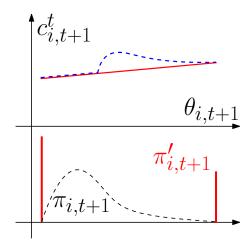
Typical example that works ($N < \infty$ agents) :

- inelastic labor supply
- agents believe skill shocks independently distributed (key results continue to hold)









- **Necessary**: one-dimensional impact of shock $\theta_{i,t+1}$ on instantaneous utility
 - in example: inelastic labor, belief in independence

- **Necessary**: one-dimensional impact of shock $\theta_{i,t+1}$ on instantaneous utility
 - in example: inelastic labor, belief in independence

• Otherwise: affine only in current utility, $u(C_{t+1}^t)$

- **Necessary**: one-dimensional impact of shock $\theta_{i,t+1}$ on instantaneous utility
 - in example: inelastic labor, belief in independence

• Otherwise: affine only in current utility, $u(C_{t+1}^t)$

- Even when affine preferred, feasibility not guaranteed
 - modifying policy to above secant takes additional resources

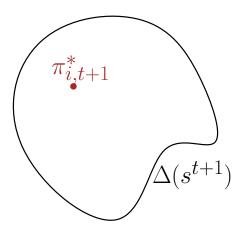
 agent *i* at *t* has statistical model π^{*}_{i,t+1} of θ_{t+1} (focus on θ_{t+1}, "too difficult" to eliminate any π_{t+2})

- agent *i* at *t* has statistical model $\pi_{i,t+1}^*$ of θ_{t+1} (focus on θ_{t+1} , "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \left. \pi_{t+1} \right| d\left(\pi_{i,t+1}^*, \pi_{t+1} \right) \le \epsilon \right\}$$

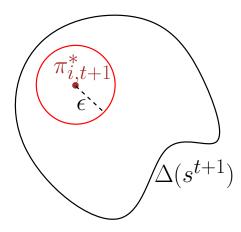
- agent *i* at *t* has statistical model $\pi_{i,t+1}^*$ of θ_{t+1} (focus on θ_{t+1} , "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \left. \pi_{t+1} \right| d\left(\pi_{i,t+1}^*, \pi_{t+1} \right) \le \epsilon \right\}$$



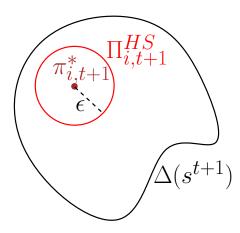
- agent *i* at *t* has statistical model $\pi_{i,t+1}^*$ of θ_{t+1} (focus on θ_{t+1} , "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \left. \pi_{t+1} \right| d\left(\pi_{i,t+1}^*, \pi_{t+1} \right) \le \epsilon \right\}$$



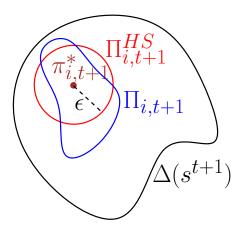
- agent *i* at *t* has statistical model $\pi_{i,t+1}^*$ of θ_{t+1} (focus on θ_{t+1} , "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \left. \pi_{t+1} \right| d\left(\pi_{i,t+1}^*, \pi_{t+1} \right) \le \epsilon \right\}$$



- agent *i* at *t* has statistical model $\pi_{i,t+1}^*$ of θ_{t+1} (focus on θ_{t+1} , "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \left. \pi_{t+1} \right| d\left(\pi_{i,t+1}^*, \pi_{t+1} \right) \le \epsilon \right\}$$



- agent *i* at *t* has statistical model $\pi_{i,t+1}^*$ of θ_{t+1} (focus on θ_{t+1} , "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \left. \pi_{t+1} \right| d\left(\pi_{i,t+1}^*, \pi_{t+1} \right) \le \epsilon \right\}$$

