Risking Other People's Money: Gambling, Limited Liability, and Optimal Incentives

Peter DeMarzo, Dmitry Livdan, Alexei Tchistyi

Stanford University

U.C. Berkeley

Motivation

- Financial meltdown 2008
 - Ex ante unlikely outcome
 - Ex post AIG, Lehman, Citi, Merrill Lynch, etc. suffered high losses
 - Losses were caused by divisions trading highly risky securities
 - Investors were unable to either monitor or understand actions taken by managers
- Managers enjoy limited liability and their compensation is performance based

Moral Hazard and Optimal Contracting

- Managers may seek private gain by taking on tail risk
 - Earn bonuses based on short-term gains
 - Put firm at risk of rare disasters
 - Limited liability leaves them insufficiently exposed to downside risk
 - Is this the result of inefficient contracting?
- Standard contracting models
 - Focus on effort provision
 - Static and dynamic models
 - Rewards for high cash flows can be optimal
 - But does this contract lead to excessive risk-taking?

- Principal/Investor(s)
 - Risk-neutral
 - Owns the company
 - Value of the company without project is A (large)
- One period risky project with payoff:

$$Y(q) = \begin{cases} 1, \text{ with probability } \mu + q\rho \\ 0, \text{ with probability } 1 - \mu - q(\rho + \delta). \\ -D, \text{ with probability } q\delta \end{cases}$$

- Project risk
 - Low risk q = 0
 - High risk q = 1
 - High risk is suboptimal: $\rho \delta D < 0$

- Principal hires agent/manager to run the project
- New output *Y*, subject to two-dimensional agency problem:
 - Divert output / shirk for private benefit (λ)
 - Gamble ($\rho < \delta D$)
- How does the possibility of gambling affect contracting?

- Contract specifies payoffs (w_0, w_1, w_d)
 - $W_d = 0$
 - $W_1 \ge W_0 + \lambda$
- No Gambling:
 - $\rho (W_1 W_0) \le \delta W_0 \quad \Leftrightarrow \quad W_0 \ge \rho \lambda / \delta$
 - Agent must receive sufficient rents to prevent gambling
 - Exp. payoff = $W_0 + \mu \lambda$ $\geq \rho \lambda / \delta + \mu \lambda = \lambda (\mu + \rho / \delta) \equiv W^s$
- Gambling:
 - Reduce agent rents: $w_0 \ge 0$
 - Exp. payoff = $W_0 + (\mu + \rho) \lambda \ge \lambda (\mu + \rho) \equiv W^g < W^s$
 - Suffer expected loss: $\delta D \rho \equiv \Delta$

Low risk is more profitable to principal than high risk if

$$\mu - W^{s} \ge \mu - \Delta - W^{g}$$
$$\Delta \ge \lambda \left(\rho/\delta - \rho\right)$$

- For small δ principal would prefer to implement high risk project or not to undertake any project
- Gambling is more costly to prevent when probability of disaster is low
 - · Limited liability prohibits harsh punishment of agent for gambling,
 - Expected loss δw_0 is low when δ is low,
 - Unless agent's compensation w_0 and w^s are high

Contract Conditional on Disaster

- If we cannot punish agent for gambling it may be cheaper to reward him for not gambling ex post
- Can the agent be rewarded for not gambling ex post?
 - Oil spills
 - Absence does not mean gambling did not occur perhaps we just got lucky?
 - Earthquakes
 - If the building survives an earthquake, that *is* evidence that the builder did not cut corners
 - Financial crisis
 - If a bank survives it while other banks fail, that is evidence that the bank did not gamble

Bonus for not Gambling

- No gambling: pay bonus *b* if no loss (*D*) given disaster $\rho (w_1 - w_0) \le \delta (w_0 + b)$
- Contract without gambling that maximizes principal payoff: $w_d = 0, w_0 = 0, w_1 = \lambda, b = \lambda \rho / \delta.$
 - Bonus *b* may be large, but expected bonus payment is not $\delta b = \lambda \rho$
 - Exp. payoff for Agent = $\lambda \mu + \delta b$ = $\lambda \mu + \rho \lambda \equiv W^g$
- In that case, no gambling is always optimal

Implementation Using Put Options

- Agent is given out-of-money put options on companies that are likely to be ruined in the "disaster" state
 - Caveat: Agent can collect the payoff from the options only if his company remains in a good shape
- Potential downside of using put options
 - Creates incentives to take down competitors
- Comprehensive cost-benefit analysis is needed

Dynamic Model

- A simple model (DS 2006)
 - Cumulative cash flow: $dY = \mu dt + \sigma dZ$
 - Agent can divert cash flows and consume fraction $\lambda \in (0, 1]$
 - Alternative interpretation: drift μ depends on agent's effort
 - Earn private benefits at rate λ per unit reduction in drift
- Gambling with tail risk
 - Gambling raises drift to $\mu + \rho$: $dY = (\mu + \rho) dt + \sigma dZ$
 - Disaster arrives at rate δ , destroying the franchise and existing assets ${\it D}$ if the agent gambled

Basic Agency Problem

- Interpretations
 - Cash Flow Diversion
 - Costly Effort (work/shirk)

The Contracting Environment

- Agent reports cash flows
- Contract specifies, as function of the history of cash flows:
 - The agent's compensation $dC_t \ge 0$
 - Termination / Liquidation
 - Agent's outside option = 0
 - Investors receive value of firm assets, $L < \mu/r$
- Contract curve / value function:

 $p(w) = \max \text{ investor payoff given agent's payoff } w$

- Provide incentives via cash dC_t or promises dw_t
- Tradeoff: Deferring compensation eases future IC constraints, but costly given the agent's impatience

Solving the Basic Model

Basic Model cont'd

- Agent's Future Payoff w
 - Promise-keeping
 - $E[dw] = \gamma w dt$
 - Incentive Compatibility
 - $\partial w / \partial y \geq \lambda$

$$\Rightarrow dw = \gamma w dt + \lambda (dy - E[dy])$$
$$= \gamma w dt + \lambda \sigma dZ$$

Investor's Payoff: HJB Equation

Boundary Conditions:

The Gambling Problem

- Agent may increase profits by taking on tail risk
 - E.g. selling disaster insurance / CDS / deep OTM puts earn ρ dt
 - Risk of disaster that wipes out franchise arrival rate δ dt, loss D

The Gambling Problem

- Agent's incentives
 - Gain from gambling: $\lambda \rho dt$
 - Potential loss: w_t , with probability δdt
 - Agent will gamble if $\lambda \rho > \delta w_t$ or

$$W_t < W^s \equiv \lambda \rho / \delta$$

- Agent will gamble if not enough "skin in the game"
- Gambling region
 - Contract dynamics: $dw = (\gamma + \delta) w dt + \lambda (dy E[dy])$
 - Value function: $(r + \delta) p^g = (\mu + \rho \delta D) + (\gamma + \delta) w p^{g'} + \frac{1}{2} \lambda^2 \sigma^2 p^{g''}$
 - Increased impatience
 - Smooth pasting: $p(w^s) = p^g(w^s)$, $p'(w^s) = p^{g'}(w^s)$

Example

- First Best = 100
 - $\mu = 10, r = 10\%, \gamma = 12\%, \sigma = 8, L = 50, \lambda = 1$
- Cash if w > 56
 w^c = 56
- Gamble if *w* < 40
 ρ = 2, δ = 5%, *w*^s = 40, *D* = 0
- Compare to pure cases
 - Longer deferral of compensation
 - Greater use of credit line vs. debt (more financial slack)

Ex-Post Detection and Bonuses

- Suppose disaster states are observable
 - Earthquakes, Financial Crises, ...
 - Can we avoid gambling by offering bonuses to survivors ex-post?
- How large a bonus?
 - If $w_t \ge w^s$: no bonus is needed to provide incentives
 - If $w_t < w^s$: increase w_t to w^s if firm survives disaster: $b_t = w^s w_t$
- Bonus region
 - Contract dynamics: $dw = [(\gamma + \delta) w \delta w^{\delta}] dt + \lambda (dy E[dy])$
 - Value function:

 $(r+\delta)p^{b} = (\mu+\delta p^{b}(w^{s})) + [(\gamma+\delta)w - \delta w^{s}]p^{b\prime} + \frac{1}{2}\lambda^{2}\sigma^{2}p^{b\prime\prime}$

Smooth pasting …

Optimal Bonuses

- Bonus payments:
 - substantially improve investor payoff
 - reduce need for deferred comp / financial slack / harsh penalties (no jumps)
- For low enough w_t, gambling is still optimal

Summary

- The double moral hazard problem is likely to be important in firms where risk-taking can be easily hidden
- Risk-taking is likely to take place
 - Probability of disaster is low
 - After a history of poor performance, when the agent has little "skin" left in the game
- As a result, optimal policies will have increased reliance on deferred compensation
- When the "safe" practices can be verified ex-post, we can mitigate risk-taking via bonuses
- When effort costs are convex, we should expect reductions in effort incentives as a means to limit risktaking, with a jump to high powered incentives in the gambling region