Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary

Contingent Convertible Debt and Capital Structure Decisions

Boris Albul, Dwight Jaffee, Alexei Tchistyi

- Contingent Convertible Bond (CCB)
 - $\bullet~$ Initially issued as debt instrument \rightarrow tax deductible coupons
 - Automatically converts into equity if and when firm reaches specified level of distress
- CCBs are viewed as instruments for prudential banking regulation
 - Recent proposals: Flannery (2002, 2009), Bernanke (2009), etc.
 - Major focus on capital requirements \rightarrow at the time of crisis CCB converts into equity \rightarrow adequate capital ratios without additional inflow of capital
- In 2009 Lloyd's Banking Group issued \$11.6 billion of Contingent Capital (CoCo) bonds
 - Turn into equity if capital ratio falls below 5.0%
 - Yield 400 bps above traditional bonds (11.0% total)
 - Replace a portion of existing straight (regular) debt

We pro	vide a formal	, comprehensive analysi	s of CCBs		
0	000000	00000000	000	00000	0000
Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summarv

Questions we try to answer:

- Q1 How to value CCBs?
- Q2 Will a firm include CCBs in its capital structure if there are no regulatory conditions?
- Q3 Will a firm add CCBs to a *de novo* capital structure, given a CCB for debt constraint?
- Q4 Will a firm add CCBs to an existing capital structure, given a CBB for debt constraint?
- Q5 Can CCBs provide a useful regulatory instrument for banks too big to fail (TBTF)?
- Q6 May CCBs create an incentive for market manipulation?
- Q7 May contract restrictions maximize the regulatory benefits of CCB?
- Q8 Will CCBs magnify the incentive for assets substitution?

- $\bullet\,$ Debt tax advantages vs. cost of default \rightarrow capital structure
- Key assumptions:
 - Firm issues equity and straight debt
 - Straight debt pays coupon c_b continually
 - Discount cash flows at constant rate r
 - Asset value follows GBM: $dA_t = \mu A_t dt + \sigma A_t dB_t^Q$
 - Tax rate $\theta \in (0,1)$
 - Distress rate $\alpha \in [0, 1]$
- **Result 1**: Optimal default boundary $A_B = \beta(1 \theta)c_b$
 - A_B maximizes equity value
- Result 2: At ∀t the value of \$1 received at (hitting time) τ(K) where K ∈ (A_B, A_t) is

$$E_t^Q \left[e^{-r(\tau(K)-t)} \right] = \left(\frac{A_t}{K} \right)^{-\gamma}$$

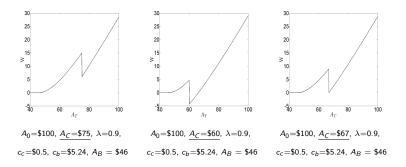
- CCB pays coupon c_c continually in time until conversion at τ(A_C) = inf{t : A_t ≤ A_C}
 - $A_C \equiv$ conversion-triggering asset level
- c_c is tax deductible
- At conversion CCB is *fully* replaced with $(\lambda \frac{c_c}{r})$ amount of equity (valued at market price)
 - $\lambda \equiv$ conversion ratio
 - No partial conversion
 - Number of share is fixed at $\frac{\lambda c_c}{W_t r}$
- $\bullet~$ At conversion no inflow/outflow of capital \rightarrow no change in asset value
- A_C , c_c and λ are set when CCB is issued \rightarrow we <u>do not</u> solve for the optimal amount of contingent convertible debt

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	○○●○○○	00000000	000	00000	0000
Condition	1: no prior	r default			

- Condition 1: c_b , c_c , A_c and λ are such that the firm does not default prior to or at CCB conversion
- $\bullet~$ At conversion $\rightarrow~$ no change in the value of assets and same amount of straight debt
- After conversion → same value maximization problem of equity holders ⇒ same A_B as for the case without CCB

KEY BUILDING BLOCK FOR VALUATIONS

CCB does not affect the optimal default boundary: $A_B = \beta(1 - \theta)c_b$

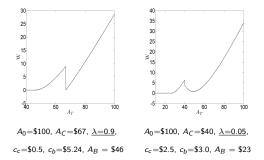


• Total value of the firm:

$$G(A_t; c_b, c_c) = A_t + \frac{\theta c_b}{r} \left(1 - \left(\frac{A_t}{A_B}\right)^{-\gamma}\right) + \frac{\theta c_c}{r} \left(1 - \left(\frac{A_t}{A_C}\right)^{-\gamma}\right) - \alpha A_B \left(\frac{A_t}{A_B}\right)^{-\gamma}$$
• Equity value: $W(A_t; c_b, c_c) = A_t - \frac{c_b(1-\theta)}{r} \left(1 - \left(\frac{A_t}{A_B}\right)^{-\gamma}\right) - \frac{c_c(1-\theta)}{r} \left(1 - \left(\frac{A_t}{A_C}\right)^{-\gamma}\right) - A_B \left(\frac{A_t}{A_B}\right)^{-\gamma} - (\lambda \frac{c_c}{r}) \left(\frac{A_t}{A_C}\right)^{-\gamma}$
• Value of straight debt:

$$U(A_t; c_b, c_c) = \frac{c_b}{r} \left(1 - \left(\frac{A_t}{A_B}\right)^{-\gamma}\right) + \left(\frac{A_t}{A_B}\right)^{-\gamma} (1-\alpha)A_B$$
• Value of CCB: $U^C(A_t; c_c) = \frac{c_c}{r} \left(1 - \left(\frac{A_t}{A_C}\right)^{-\gamma}\right) + \left(\frac{A_t}{A_C}\right)^{-\gamma} (\lambda \frac{c_c}{r})$
• Tax benefits: $TB(A_t; c_b, c_c) = \frac{\theta c_b}{r} \left(1 - \left(\frac{A_t}{A_B}\right)^{-\gamma}\right) + \frac{\theta c_c}{r} \left(1 - \left(\frac{A_t}{A_C}\right)^{-\gamma}\right)$
• Bankruptcy costs: $BC(A_t; c_b, c_c) = \alpha A_B \left(\frac{A_t}{A_B}\right)^{-\gamma}$

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	○○○○●○	00000000	000	00000	0000
Condition	1 examples				



Based on Proposition 2: lower A_C leads to higher firm and equity value
Define the lowest A_C that satisfies Condition 1 as

$$A_{CL} = \inf\{A_C : W(A_s; c_b, c_c) \ge 0, \forall s \ge \tau(A_C)\}$$

<u>Condition 2</u>: c_b, c_c, A_C and λ are such that equity value (W(A_t; c_b, c_c)) is strictly increasing in asset level (A_t) for A_t ≥ A_C

- At conversion equity holders are getting rid of the obligation to pay cc
- High $\lambda \equiv$ expensive conversion \rightarrow equity value continues to decline
- Low $\lambda \equiv$ inexpensive conversion \rightarrow equity value increases
- Condition 2 \rightarrow alternative conversion rule based on <u>observable</u> equity price

• Conversion trigger:
$$A_C \rightarrow W_C = W(A_C; c_b, c_c)$$

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
		0000000			
Small a	amount of CC	B in the optimal capita	l structure		

Assumptions about the firm

- No leverage
- Issues straight debt and CCB
- Fix a sufficiently low amount of CCB that satisfies Condition 1 \to find an optimal amount of straight debt that maximized firm value
- Optimal amount of straight debt (c^{*}_b) with CCB is the same as optimal amount of straight debt without CCB

Intro	Model	$CCB \in Capital Structure$	TBTF	Manipulations	Summary
00	000000		000	00000	0000
		eases by the amount of evered firm want to issue		$v_{ings} \rightarrow original o$	wners and

(i) Total firm value is higher by the amount of tax savings from c_c

$$G(A_t; c_b^*, c_c) = G(A_t; c_b^*, 0) + TB^C(A_t; c_b^*, c_c)$$

(ii) Equity gets crowded by contingent convertible debt one-to-one (adjusted for new tax savings)

$$W(A_t; c_b^*, c_c) = W(A_t; c_b^*, 0) - [U^{C}(A_t; c_b^*, c_c) - TB^{C}(A_t; c_b^*, c_c)]$$

(iii) Total tax benefits are higher by the amount of new savings

$$TB(A_t; c_b^*, c_c) = TB(A_t; c_b^*, 0) + TB^{C}(A_t; c_b^*, c_c)$$

(iv) Values of straight debt and bankruptcy costs are the same

$$U(A_t; c_b^*, c_c) = U(A_t; c_b^*, 0), BC(A_t; c_b^*, c_c) = BC(A_t; c_b^*, 0).$$

Intro	Model	$CCB \in Capital Structure$	TBTF	Manipulations	Summary
00	000000		000	00000	0000
Q2. Will condition		de CCBs in its capital :	structure if t	here are no regul	atory

- A firm will always wish to add at least some CCB to its capital structure, to obtain the tax shield
- CCB are first added as a CCB for equity swap
 - Assets A_t are unaffected by capital changes
 - Optimal straight debt is unaffected by CCB (as long as Condition 1 holds)
- This is a losing proposition for bank regulators:
 - The default boundary A_B is unchanged
 - Fiscal deficit is expanded by new CCB tax shield
 - This may also magnify asset substitution incentive

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	000000		000	00000	0000
CCB for	debt swap i	n a <i>de novo</i> capital stru	ucture		

• Assumptions about the firm

- No leverage
- Issuing straight debt and CCB

Regulatory constraint

• Regulators constrain the total amount of debt

$$U(\bar{A}_B; \bar{c}_b, c_c) + U^C(\bar{A}_B; \bar{c}_b, c_c) = U(A_B^*; c_b^*, 0)$$

•
$$\bar{A}_B = \beta(1-\theta)\bar{c}_b; \ A_B^* = \beta(1-\theta)c_b^*$$

- $U(A_B^*; c_b^*, 0) \equiv$ optimal amount of straight debt without CCB
- Firm → can choose between straight debt (no constraints) and straight debt plus CCB (regulatory constraint)

Intro	Model	$CCB \in Capital Structure$	TBTF	Manipulations	Summary
00	000000		000	00000	0000
Q3. Will a constraint		CBs to a <i>de novo</i> capita	l structure,	given a CCB for	debt

- Here we impose a regulatory constraint that CCB can be added only as a swap for straight debt
- A firm will always include at least some CCB as part of a *de novo* capital structure:
 - The tax shield benefit is reduced (because CCBs convert before the straight debt defaults)
 - But the reduction in bankruptcy costs dominates
- This is perfect for prudential banking regulation:
 - Lower bankruptcy costs, lower tax shield costs
 - There is also generally less risk shifting incentive

Intro	Model	$CCB \in Capital Structure$	TBTF	Manipulations	Summary
00	000000		000	00000	0000
CCB for	r debt swap i	n the existing capital st	ructure		

• Assumptions about the firm

• Leveraged \rightarrow straight debt paying coupon \hat{c}_b $(\hat{c}_b > c_b^*)$

Market constraint

- Firm wants to issue CCB and swap it for a portion of straight debt \rightarrow reduce \hat{c}_b to \bar{c}_b ($\bar{c}_b < \hat{c}_b$)
- Announcement \rightarrow market value of existing straight debt (still paying \hat{c}_b) rises from $U(\hat{A}_B; \hat{c}_b, 0)$ to $U(\bar{A}_B; \hat{c}_b, 0)$
- U(Ā_B; ĉ_b, 0) reflects lower default boundary due to less straight debt after swap
- Straight debt holders must be indifferent between holding SD and swapping it for CCB

$$U(\bar{A}_B;\bar{c}_b,c_c)+U^C(\bar{A}_B;\bar{c}_b,c_c) \quad = \quad U(\bar{A}_B;\hat{c}_b,0)$$

• $\bar{A}_B = \beta(1-\theta)\bar{c}_b$, $U(\bar{A}_B; \bar{c}_b, c_c) \equiv$ new amount of straight debt; $U^C(\bar{A}_B; \bar{c}_b, c_c) \equiv$ amount of CCB

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	000000	○○○○○○●○	000	00000	0000
Debt ove holders	rhang $\rightarrow CO$	CB increases total firm	n value but gain	s go to straight	debt

- (i) For a sufficiently small amount of CCB change in total firm value is positive
- (ii) Cost of bankruptcy decreases, $BC(\bar{c}_b) < BC(\hat{c}_b)$
- (iii) Equity value decreases, $W(\bar{c}_b, c_c) W(\hat{c}_b, 0) < 0$

 Intro
 Model
 CCB ∈ Capital Structure
 TBTF
 Manipulations
 Summary

 000
 000000
 00000
 0000
 0000
 0000
 0000

 Q4. Will a firm add CCBs to an existing capital structure, given a CCB for debt constraint?
 CCB for debt
 CCB for debt

- The existing equity holders will <u>not</u> voluntary enter into swap of CCB for existing straight debt (given straight debt ≥ optimal amount)
- While the swap will increase the firm's value (as in Q3), the gain now accrues only to the existing straight holders
 - This is debt-overhang problem
 - The problem would be reduced, even eliminated, if short-term debt could be swapped as it matured

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	000000	00000000	●○○	00000	0000
Too-big	-to-fail firms				

• Assumptions about the firm

- 'Too-big-to-fail' (TBTF) \equiv governments take over debt at default \Rightarrow straight debt is risk-free
- Leveraged (straight debt paying coupon c_b) or unleveraged
- Government subsidy characteristics:
 - At default worth $\frac{c_b}{r}$
 - Equity holders are decision makers \rightarrow maximum-equity-valuation problem does not change \rightarrow default boundary A_B does not change
 - Value of the subsidy at time t

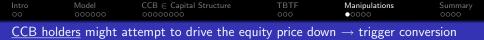
$$S(A_t; c_b, 0) = \left(\frac{c_b}{r} - A_B\right) \left(\frac{A_t}{A_B}\right)^{-\gamma} = c_b \left(\frac{1}{r} - (1-\theta)\beta\right) \left(\frac{c_b(1-\theta)\beta}{A_t}\right)^{\gamma}$$

• Increases in c_b

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
			000		
Firm w	ants to issue	as much straight debt a	as possible		

• Total firm value increases in c_b

$$G(A_t; c_b, c_c) = A_t + \frac{\theta c_b}{r} \left(1 - \left(\frac{A_t}{A_B}\right)^{-\gamma} \right) + \frac{\theta c_c}{r} \left(1 - \left(\frac{A_t}{A_C}\right)^{-\gamma} \right) + \left(\frac{c_b}{r} - A_B\right) \left(\frac{A_t}{A_B}\right)^{-\gamma}$$


 Government sets limits on how my straight debt could be issue → fix coupon c^g_b for straight debt ⇒ regulatory constraint

$$U(A_t; c_b^g, 0) = U^C(A_t; \bar{c}_b, c_c) + U(A_t; \bar{c}_b, c_c)$$
$$\bar{c}_b = c_b^g - c_c \left(1 - (1 - \lambda) \left(\frac{A_t}{A_C}\right)^{-\gamma}\right)$$

*c
_b* < c^g_b → S(A_t; c_b, 0) < S(A_t; *c
_b*, c_c) ⇒ CCB reduces cost of subsidy

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	000000	00000000	○○●	00000	0000
Q5. Can	n CCBs provi	de a useful regulatory i	nstrument fo	or banks TBTF?	

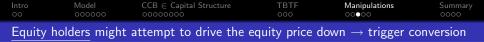
- Yes, a CCB for straight debt swap reduces the government subsidy by reducing the expected cost of bondholders bailouts
 - The key is to reduce the amount of straight debt
 - Taxpayers benefit from such a swap, but bank equity holders would not voluntarily participate
 - The conclusion requires Condition 1 as before
 - A mandatory swap might dominate a bank tax (by directly eliminating the bailout costs)

- Market manipulation by CCB holders ≡ buy CCB, drive price down, trigger conversion (get cheap equity), sell equity when market corrects
- A_t is uncertain $\rightarrow A_H$ with p and A_L with (1-p)
- Conversion based on observable equity price (as before)
- Model driving equity price down as manipulating the market into believing that probability of A_H is p', s.t. p' < p
- Price of equity at conversion as the result of manipulation

$$\widetilde{W}_t = p' W(A_H; c_b, 0) + (1 - p') W(A_L; c_b, 0)$$

• Price of equity post-conversion, after the market corrects its beliefs

$$\widetilde{\widetilde{W}_t} = pW(A_H; c_b, 0) + (1-p)W(A_L; c_b, 0)$$


• Payoff with manipulation (after the market corrects)

$$\Pi'_{t} = \lambda \frac{c_{c}}{r} \frac{pW(A_{H}; c_{b}, 0) - (1 - p)W(A_{L}; c_{b}, 0)}{p'W(A_{H}; c_{b}, 0) - (1 - p')W(A_{L}; c_{b}, 0)}$$

Payoff without manipulation

$$\Pi_t = pU^C(A_H; c_b, c_c) + (1-p)\lambda \frac{c_c}{r}$$

- $\exists \lambda^* \in (0,1)$, s.t. if $\lambda \leq \lambda^* \Rightarrow$ do not manipulate $(\Pi_t \geq \Pi'_t)$, if $\lambda > \lambda^* \Rightarrow$ manipulate $(\Pi_t < \Pi'_t)$
- Intuition:
 - (a) Small $\lambda \equiv$ give up future c_c payments for 'too' little equity \Rightarrow do not manipulate
 - (b) Bigger (p p') (i.e., easier to manipulate) \rightarrow lower λ^*
 - (c) Bigger $(A_H A_L)$ (i.e., bigger equity price volatility) \rightarrow lower λ^*

- Market manipulation by equity holders \equiv buy equity, drive price down, trigger conversion (get rid of obligation to pay c_c), sell equity when market corrects
- Model driving equity price down as manipulating the market into believing in poor prospects of the firm
- Price of (old) equity **before manipulation**:

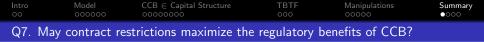
 $W(A_t; c_b, c_c)$

• Price of (total) equity at the point of conversion:

 $W(A_C;c_b,0)$

• Price of (old) equity post-conversion, after the market corrects:

$$W(A_t; c_b, 0) - \lambda \frac{c_c}{r} \frac{W(A_t; c_b, 0)}{W(A_c; c_b, 0)}$$


• Change in value of (old) equity the result of manipulation (post market correction)

$$\Delta W_t = W(A_t; c_b, c_c) - [W(A_t; c_b, 0) - \lambda \frac{c_c}{r} \frac{W(A_t; c_b, 0)}{W(A_c; c_b, 0)}]$$

- $\exists \lambda^{**} \in (0, 1)$, s.t. if $\lambda \geq \lambda^{**} \Rightarrow$ do not manipulate $(\Delta W_t \leq 0)$, if $\lambda < \lambda^{**} \Rightarrow$ manipulate $(\Delta W_t > 0)$
- Intuition:
 - (a) Larger $\lambda \equiv$ pay 'too' much for getting rid of c_c payments \Rightarrow do not manipulate
 - (b) Closer A_t is to A_C (i.e., easier for equity holders to manipulate) \rightarrow closer $\frac{W(A_t;c_b,0)}{W(A_C;c_b,0)}$ is to $1 \Rightarrow$ need $\lambda = 1 \theta$ so that $\lambda \ge \lambda^{**}$ for $\forall A_t$

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	000000	00000000	000	○○○○●	0000
Q6. Ma	ay CCB create	e an incentive for marke	et manipulat	ion?	

- CCB may potentially create an incentive for either the CCB holders or bank equity holders to manipulate the bank's stock price to a lower value to force a CCB for equity conversion
 - CCB holders have incentive to manipulate the equity price only if the ratio of equity conversion value to CCB face value (λ) is sufficiently high to make the conversion profitable for themselves
 - Bank equity holders have incentive to manipulate the equity price only if λ is sufficiently low to make the forced conversion profitable for themselves.

- Yes, the CCB regulatory benefits generally depend on the contract and issuance terms
- Perhaps most importantly, the regulatory benefits vanish if banks simply substitute CCBs for equity
 - It is thus essential to require CCB issuance to substitute for straight debt (and not for equity)
- Also, the higher the threshold for the conversion trigger, the greater the regulatory benefits
- The conversion ratio may also determine the incentives for stock price manipulation

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	000000	00000000	000	00000	0000
Table 1.	Effects of (CCB issuance on the car	nital structu	re of the firm	

Firm	Constraint	Firm Value	Equity Holders' Value	Default Risk	Asset Substitution	Tax Savings	Other Effects	Firm Decision
Unleveraged	Sufficiently small amount of CCB	Î	Ţ	\leftrightarrow	Î	Î	n/c	Issue CCB on top of optimal amount of SD
Leveraged with SD	Sufficiently small amount of CCB	Î	Ť	\leftrightarrow	Ť	Ť	n/c	Issue CCB on top of existing amount of SD
Unleveraged	Total amount of debt is fixed	Î	Ť	Ţ	Ţ	~	n/c	Replace some SD with CCB
Leveraged	Total amount of debt is fixed	î	Ţ	ţ	Ţ	~	Debt overhang	Do not issue CCB
TBTF (Leveraged/ Unleveraged)	Total amount of debt is fixed	Ļ	Ļ	Ļ	n/c	~	Reduced govern- ment subsidy	Do not issue CCB

*SD: straight debt; TBTB: Too-big-to-fail; n/c: not considered; \uparrow : increase; \downarrow : decrease; \leftrightarrow : no change; \sim : no effect or insignificant increase/decrease

00	000000	0000000	000	00000	0000
Table 2	· Incentives (of CCB holders and equi	ty holders to	manipulate the s	tock price

Conversion Ratio	Action	Intuition
$0 < \lambda^* < \lambda$	CCB holders want to	If λ is high CCB holders receive
	drive the stock price down to trigger conversion	a large amount of undervalued equity at conversion
$\lambda \leq \lambda^*$	CCB holders do not want to trigger conversion	If λ is low CCB holders are poorly compensated at conversion
$\lambda < 1 - heta$	Equity holders want to drive the stock price down to trigger conversion	If λ is low equity holders can cheaply get rid of the obligation to pay c_c
$1 - \theta \leq \lambda$	Equity holders do not want to trigger conversion	If λ is high conversion is costly to equity holders

Intro	Model	CCB ∈ Capital Structure	TBTF	Manipulations	Summary
00	000000	00000000	000	00000	○○○●
Conclusic	ons and furt	her research			

- While CCB are highly valuable for prudential banking regulation, efficient implementation will require more detailed modeling
 - Model should allow CCB to convert in a sequence of triggers and/or the banks to commit to issue new CCBs as existing bonds convert
 - Finite maturity bonds would reduce the debt overhang costs of CCB for straight debt swaps
 - Including asset price jumps would likely improve the model's pricing accuracy
 - Finally, a full capital budgeting solution would allow the bank to buy or sell assets directly