
Land Property Rights, Financial Frictions, and Resource Allocation in Developing Countries

Kristina Manysheva Princeton University December 21, 2022

Low Financial Development & Insecure Property Rights in Developing World

Share of Land with No Documentation (2020)

map insecurity

As a result, **LAND**

- ... can't be sold/rented out
- ... subject to expropriation risk
- ... can't be used as collateral

Effect of land and financial frictions on economic development? Role of their interaction?

- Incorporate land and financial market frictions into HA macro model
- Use micro data from Tanzania to estimate parameters of model
- Quantify and compare effects of land and financial reforms in GE setting
- Assess impact of various channels of land reform, including better access to credit

- Data to show resource misallocation linked to land & credit market frictions
- Model to quantify GE effect of land reform:
 - ▶ More efficient land allocation across HH \Rightarrow \uparrow in agricultural output by 7.4%
 - ▶ More efficient allocation of HH across occupations $\Rightarrow \uparrow \uparrow$ non-agric. output by 8.2%
 - ▶ Shift of HH away from agriculture to other occupations (share of farmers ↓ by 8.6%)
 - \blacktriangleright Impact of collateral channel is qualitatively \approx to impact of financial reform
- Land market frictions amplify effect of financial market imperfections, especially among poorest

1. Model Framework

2. Reduced Form & Model Calibration

3. Quantitative Analysis: Model Mechanism

4. Land Reform

Organizing Framework

- Heterogeneous agent model (in wealth, land ownership, and ability)
- Infinite horizon and discrete time
- Measure one of households indexed by $i \in [0, 1]$
- Model incorporates
 - Endogenous occupational choice (farmers, workers, entrepreneurs)
 - Endogenous evolution of communal land
 - Forward-looking saving decision
 - Land and financial markets are incomplete

Land Market Imperfections

- Economy's aggregate land endowment is L
 - $\mu_I \in [0, 1]$: communal
 - ▶ $1 \mu_I$: private

Each household endowed with some $l \ge 0$ under property right regime, $pr = \{c, p\}$

- Communal land
 - can't be rented out
 - ▶ subject to expropriation risk if not used (π_E land expropriated, π_R reallocated)
 - can't be used as collateral

Financial Market Imperfections

- Competitive financial intermediary receives deposits and makes loans $(r_t^k = r_t + \delta)$
- No state-contingent bonds, and financial wealth is non-negative

```
a_{i,t+1} \ge 0 for all t
```

- Only within-period credit to finance capital
- Obtained loan and assets are costlessly transformed into capital
- Due to limited enforceability borrowing limited by collateral constraint
- Private land can also be used as collateral
- Within-period borrowing to finance capital up to the limit

$$k_t \leq \lambda_k a_t + (\lambda_k - 1) q_t^l I_{ extsf{land=private}}$$

Household Problem Conditional on Occupational Choice – Private Land

$$V_t(s_{it}) = \max_{c_{it}, a_{it+1}, k_{it}^{o \in \{E, F\}}, n_{it}^{o \in \{E\}}, l_{it,d}^{o \in \{F\}}} \frac{c_{it}^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t[V_{t+1}(s_{it+1}|s_{it})], \text{ where } s_{it} = (a_{it}, z_{it}^a, z_{it}^e, l_i)$$

s.t.

$$c_{it} + a_{it+1} \leq y_{it}^{o} + (1 + r_t)a_{it} + r_t^{l}l_i$$

$$k_{it} \leq \lambda_k a_{it} + (\lambda_k - 1)q'_t l_i, \quad o \in \{Entrep, Farmer\} \quad (a_{it+1} \geq 0)$$

And

$$y_{it}^{Entrep} = z_{it}^{e} k_{it}^{\alpha_{e}} n_{it}^{\gamma_{e}} - w_{t} n_{it} - r_{t}^{k} k_{it}$$

$$y_{it}^{Worker} = w_{t}$$

$$y_{it}^{Farmer} = z_{it}^{a} k_{it}^{\alpha_{a}} (l_{it}^{d})^{\gamma_{a}} - r_{t}^{k} k_{it} - r_{t}^{l} l_{it}^{d}, \quad \alpha + \gamma < 1$$

$$V_{t}(a_{it}, z_{it}^{a}, z_{it}^{e}, l_{it}) = \max_{c_{it}, a_{it+1}, k_{it}, l_{it}^{d}} \frac{c_{it}^{1-\sigma}}{1-\sigma} + \beta \left\{ \pi_{R} \mathbb{E}_{t}[V_{t+1}(s_{it+1}, l_{it+1} = l_{it} + \eta_{t} | s_{it})] + (1 - \pi_{R}) \mathbb{E}_{t}[V_{t+1}(s_{it+1}, l_{it+1} = l_{it} | s_{it})] \right\}$$

s.t.

$$c_{it} + a_{it+1} \le y_{it} + (1 + r_t)a_{it}$$

 $k_{it} \le \lambda_k a_{it}$ and $a_{it+1} \ge 0$

where

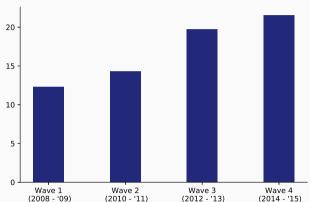
$$y_{it} = z_{it}^{a} k_{it}^{\alpha_{a}} (I_{it}^{d})^{\gamma_{a}} - r_{t}^{k} k_{it} - r_{t}^{l} (I_{it}^{d} - I_{it}) \mathbb{I}_{\{I_{it}^{d} \ge I_{it}\}}$$

Household Problem of Worker and Entrepreneur – Communal Land

$$V_{t}(a_{it}, z_{it}^{a}, z_{it}^{e}, l_{it}) = \max_{c_{it}, a_{it+1}, k_{it}^{o \in E}, n_{it}^{o \in W}} \frac{c_{it}^{1-\sigma}}{1-\sigma} + \beta \left\{ \pi_{E} \mathbb{E}_{t} [V_{t+1}(s_{it+1}, l_{it+1} = 0 | s_{it})] + (1 - \pi_{E}) \mathbb{E}_{t} [V_{t+1}(s_{it+1}, l_{it+1} = l_{it} | s_{it})] \right\}$$
s.t.
$$c_{it} + a_{it+1} \leq y_{it}^{o} + (1 + r_{t})a_{it}$$

$$k_{it} \leq \lambda_{k}a_{it} , o \in \{E\} \text{ and } a_{it+1} \geq 0$$
And
$$y_{it}^{Entrep} = z_{it}^{e} k_{it}^{\alpha_{e}} n_{it}^{\gamma_{e}} - w_{t} n_{it} - r_{t}^{k} k_{it}$$

$$y_{it}^{Worker} = w_{t}$$


1. Model Framework

2. Reduced Form & Model Calibration

3. Quantitative Analysis: Model Mechanism

4. Land Reform

Measure of Land Property Rights in Tanzania

Share of Land that Has Title

Land Property Rights and Allocation of Land

- Estimate agricultural production function
 - Dynamic panel approach to address endogeneity
 - ► Agriculture is labor and land intensive & exhibits *decreasing return to scale*
- Efficient static allocation with no market frictions:

 $\log\left(L_{i}^{*}
ight)\propto\log\left(e_{i}
ight)$

- Test if relationship holds in data and same across households
- Find that coefficient is
 - ▶ more than 50% higher for households with land under strong property rights
 - more than twice as high for households that use credit
- Land misallocation linked to land and financial market imperfections

Data

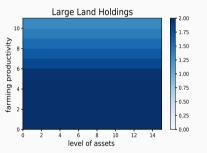
Results

Robustness and Other Findings

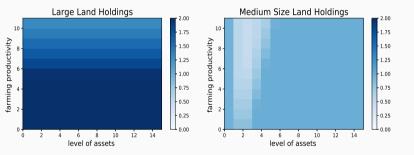
- Relax assumption of Cobb-Douglas production function
 Factor Ratios CES
 Production function and misallocation exercise without shocks
 Selection issues
 HH Fixed Effects Other Measures of Property Rights
 HH characteristics: HH with titled land also have higher probability of Results
 getting a loan
 - rent out their land
 - operate non-agricultural enterprise
 - Iower probability of agriculture being the main employment

1. Model Framework

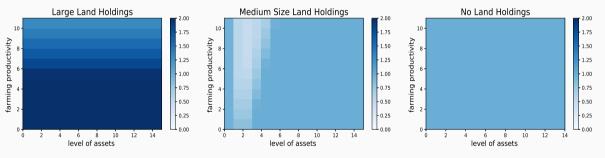
2. Reduced Form & Model Calibration


3. Quantitative Analysis: Model Mechanism

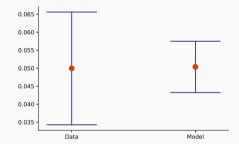
4. Land Reform


Three main channels:

- Expropriation risk => efficiency of labor allocation
- Inability to rent out land => efficiency of land allocation
- Inability to use land as collateral => access to credit (especially among poorest)

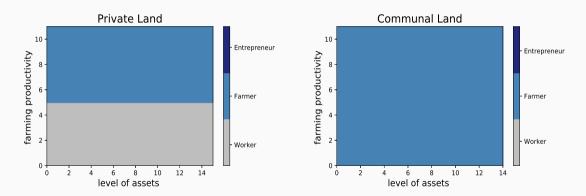

Ratio of Land Usage by Communal Farmers Relative to Private Farmers

Ratio of Land Usage by Communal Farmers Relative to Private Farmers

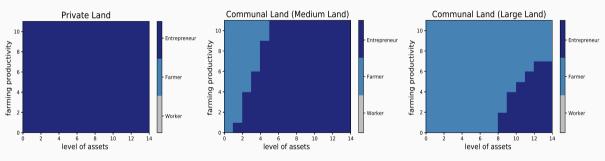

Ratio of Land Usage by Communal Farmers Relative to Private Farmers

Land and Productivity Relationship: Data vs Model

Efficient static allocation:


 $\log(L_i^*) \propto \log(e_i)$

Homogeneous across farmers?

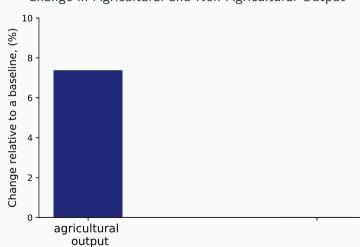

- Data: 50.5%
- Model: 48.8% higher coefficient for farmers with titled land

Households with Low Entrepreneurial Productivity

Data: In HH with titled land the probability of head's main employment be (share of working hours) in agriculture is *lower*

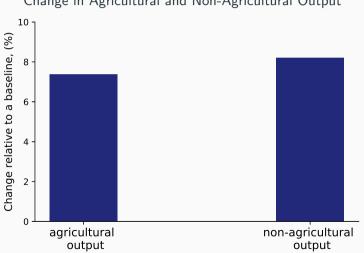
Households with High Entrepreneurial Productivity

Data: In HH with larger plot size (untitled!) the probability of head's main employment be (share of working hours) in agriculture is *higher*

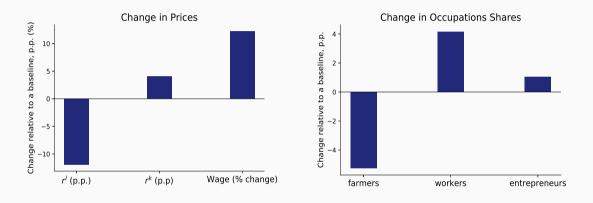

1. Model Framework

2. Reduced Form & Model Calibration

3. Quantitative Analysis: Model Mechanism


4. Land Reform

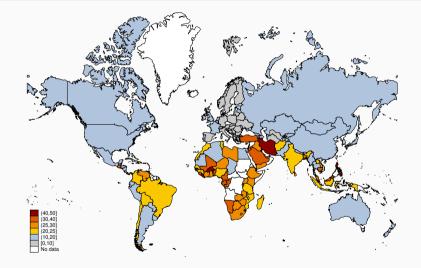
Land Reform: 100% of Private Land


Change in Agricultural and Non-Agricultural Output

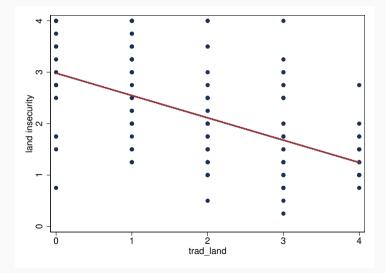
Land Reform: 100% of Private Land

Change in Agricultural and Non-Agricultural Output

Land Reform: 100% of Private Land


Partial vs General Equilibrium

Other Counterfactual Exercises


- Exploit different mechanisms of land reform by removing one friction at a time
 - Different channels affect economy differently
 - Ability to rent out land $\Rightarrow \uparrow \uparrow h$ agricultural output
 - Ability to use land as collateral + no expropriation risk $\Rightarrow \uparrow$ non-agricultural output
- Compare Land Reform and Financial Reform
 - Financial reform has *similar* aggregate effect to collateral channel of land reform, but different distributional impact
- Land reform \Rightarrow positive welfare gains, but not evenly distributed
- Postreform transition dynamics: most changes pprox 7 yr, new st. st. pprox 15-20 yr 😡
- Model Extensions/Future Work

- In data, insecure property rights are associated with misallocation of resources
- Quantitative model with both land and financial markets frictions:
 - Land reform $\Rightarrow \uparrow \uparrow$ agricultural and non-agricultural output, \Downarrow farmers and $\uparrow \uparrow$ entrepr.
 - Land reform $\Rightarrow \uparrow \uparrow$ financial inclusion, *especially among poorest*

Share of Adults Who Feel Insecure about Property (2020)

Communal land and land tenure security

Contributions

- Model with both land and financial markets frictions in GE setting
 - Lagakos, Waugh ('13); Gollin et al. ('14); Moll ('14); Bick et al. ('16); Yu, Zheng ('16); Adamopoulos et al. ('17); Chen et al. ('17); Bergquist et al.('19); Greenwood et al.('19); Gottlieb, Grobovšek ('19); Ngai et al. ('19); Adamopoulos, Restuccia ('20); Buera et al. ('20); Dabla-Norris et al. ('20), Donovan ('20); Le ('20)
- Evidence of resource misallocation in developing country
 - Misallocation: Hsieh, Klenow ('09); Banerjee, Moll ('10); Collard-Wexler et al. ('11); Oberfield ('13);
 Kalemli-Ozcan, Sørensen ('14); Restuccia, Rogerson ('17); Gollin, Udry ('19); David, Venkateswaran ('19); Baqaee,
 Farhi ('20)
 - Land Property Rights: Bromley ('10); Macours et al. ('10); de Janvry et al. ('15); Chari et al. ('17); Beg ('21)
- Link between land property rights, access to credit, entrepreneurship & firm growth
 - McKenzie D, Woodruff C. ('08); Buera et al. ('15); Lagakos ('16); Meager ('19); Quinn, Woodruff ('19)

Model: Main Features

- Household's state
 - productive skill in agricultural sector, $z_a > 0$
 - productive skill in entrepreneurship, $z_e > 0$
 - \blacktriangleright land endowment , $I\geq 0$
 - property right regime, $pr = \{c, p\}$
 - communal (weak)
 - private (strong)
 - level of assets, $a \ge 0$
- Skills exogenous and given by stationary transition process (AR1 in logs)

Occupational Choice

- Household can choose to be
 - entrepreneur
 - worker
 - ► farmer
- Single final good is produced both by farmers and entrepreneurs
- Workers hired by households that operate their own business

Assumption: Occupational choices mutually exclusive within a period t, but can be freely changed across periods with no cost.

Evolution of Communal Land

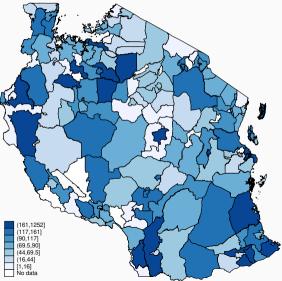
Land not used at t subject to expropriation risk at t + 1 with probability π_E :

$$\pi_{E} = \begin{cases} \in (0,1] & \text{if } I_{\mathbb{I}\{land=communal\}} - l^{d} \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Expropriated land reallocated via *endogenous* lump-sum transfer η_t with probability π_R :

$$\pi_R = \begin{cases} \in (0,1] & \text{ if occupation} = \textit{farmer} \\ 0 & \text{ otherwise} \end{cases}$$

Both π_E and π_R can be generalized to any function that is state dependent

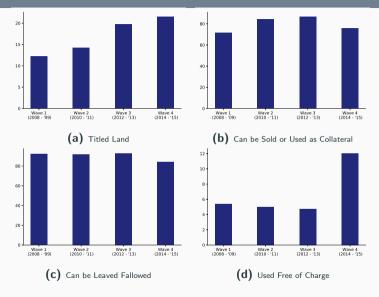

Competitive Equilibrium

Given an initial distribution of state variables $\mathcal{F}_t(a_{it}, l_{it}, z_{it}^a, z_{it}^e, pr_{it})$ and a sequence of wages, interest rate of capital and land, and communal land reallocation $\{w_t, r_t, r_t^l, \eta_t\}_{t=o}^{\infty}$, a competitive equilibrium is given by a sequence of allocations $\{c_t(s), ...\}_{t=o}^{\infty}$ and occupational choices $\{e_t(s) = \{Worker, Entrepreneur, Farmer\}\}_{t=o}^{\infty}$ such that (*i*) households maximize utility by solving (...) subject to (...), (*ii*) the financial intermediary sector makes zero profits and (*iii*) there is market clearing in the labor market, capital market, and land market.

Agricultural Data: Tanzania

- Agriculture \approx 30% of GDP & 65% of employm.
- Nationally representative panel survey
 - ► Four waves 2008-09, 10-11, 12-13, 14-15
 - Detailed data on agricultural production
- Dominated by smallholders (mean \approx 2 ha)
- Mean annual harvest pprox \$500
- On average < 10% is hired labor, low mechanization
- < 15% of land titled, \approx 10% of HH borrow Summary Statistics Enterprise Survey back

Distribution of survey sample


Variable	Mean	Median	Std. Dev.	Variable % of obs
Total harvest (ths TZS)	722.9	164.4	25,460	HH own/cultivate plot 65.4
Yield (ths TZS/acre)	163.3	62.5	2,288	Plots cultivated 85.0
				Land utilization 85.2
Land cultivated (acres)	5.5	2.8	12.3	
Land available (acres)	6.2	3.0	14.9	Hire workers 43.1
				Use chemicals 35.5
Total labor (per-day)	172.9	116.0	185.7	
HH labor (per-day)	158.6	104.0	178.2	Can leave plot 86.5
Hired labor (per-day)	14.3	0	37.9	Right sell/coll 68.4
Daily wage (ths TZS)	3.8	2.5	4.7	Title/certificate 12.5
Capital (ths TZS)	1,887.9	13.5	7,850.4	Took loan (1 yr) 10.5
				Took loan, ag (1 yr) 1.3
Chemicals (ths TZS)	2.5	0	7.6	Took loan, bus (1 yr) 2.7

Average exchange rate in 2013 was \approx 1,600 TZS per 1 USD

Entrepreneurship Dynamics in Tanzania

- 90.2% of firms in Tanzania are SME, with 63.2% having employment < 20 empl.
- 95.3% of firms are private domestic firms, and 75.2% are sole proprietorship
- Access to finance is limited by international standards
 - $\blacktriangleright~$ 18% of firms use banks to finance investment, and $\approx~17\%$ have a loan/credit line
 - ▶ 38% of firms report access to finance as the biggest obstacle for their operations
- Evidence from pilot titling projects in Tanzania that households used their land to obtain credit

Other Measures of Land Property Rights

Estimate Cobb-Douglas production:

$$y_{it} = \beta_0 + \beta_I I_{it} + \beta_n n_{it} + \beta_k k_{it} + \omega_{it} + \varepsilon_{it}$$

where

 y_{it} is log output, l_{it} is log of land input, n_{it} is log labor, k_{it} – log of capital. ε_{it} – shocks to productivity not predictable by farmer before decide on inputs ω_{it} – observed/predictable by farmers (soil quality, expected rainfall, etc.)

=> endogeneity problem as l_{it} , n_{it} , $k_{it} \propto \omega_{it}$

Assume ε_{it} is i.i.d. over time & uncorrelated with \mathcal{I}_{it} , and the process for ω_{it} is AR(1):

$$\omega_{it} = \rho \omega_{it-1} + \xi_{it}$$

Quasi-difference production function to get estimating equation:

$$y_{it} - \rho y_{it-1} = \beta_0 (1 - \rho) + \beta_l (I_{it} - \rho I_{it-1}) + \beta_n (n_{it} - \rho n_{it-1}) + \beta_k (k_{it} - \rho k_{it-1}) + \xi_{it} + (\varepsilon_{it} - \rho \varepsilon_{it-1})$$

Assume ξ_{it} is uncorrelated with \mathcal{I}_{it-1} , estimate model using the moment conditions

$$\mathbb{E}[\xi_{it} + (\varepsilon_{it} - \rho \varepsilon_{it-1}) | \mathcal{I}_{it-1}] = \mathbb{E}[(\xi_{it} + (\varepsilon_{it} - \rho \varepsilon_{it-1})) \cdot \begin{pmatrix} I_{it-1} \\ n_{it-1} \\ k_{it-1} \end{pmatrix}] = 0$$

Production Function: Data

- Focus on long rainy season in each year and on temporarily crops
- Match households that split off based on the plots cultivated
- Y_{it} real agricultural output aggregated at the hh level (median prices in wave2 of each crop used as weights)
- L_{it} the size of the land that was actually cultivated in acres
- *N_{it}* total number of person-days (includes domestic and hired)
- *K_{it}* capital inputs aggregated at the hh level (include owned and used capital, rented in capital, and chemicals such as fertilizers)

Production Function Estimates

	(OLS)	(OLS FE)	(DP)
log(Land)	0.343	0.264	0.299
	(0.015)	(0.026)	(0.071)
log(Labor)	0.404	0.366	0.368
	(0.017)	(0.025)	(0.161)
log(Capital)	0.111	0.051	0.035
	(0.006)	(0.009)	(0.025)
β_l			0.294
β_n			0.412
β_k			0.050
ρ			0.533
Return to scale	0.85	0.68	0.76
Test on common factor restrictions			0.835
Unexpected Shocks	\checkmark	\checkmark	\checkmark
# obs.	8,949	6,073	3,641

St. errors two-way clustered at district & HH levels. Regressions include Year FE, OLS - also district-year FE (back)

Conceptual Framework

n heterogenous farmers producing single homogeneous good:

$$Y_i = e_i A L_i^{\alpha_L} \prod_k X_{k,i}^{\alpha_{X_k}}$$

where L_i is land input and e_i – farmer's individual productivity, $X_{k,i}$ - other inputs

Efficient static allocation with no market frictions:

 $\log(L_i^*) \propto \log(e_i)$

and
$$rac{L_i^*}{X_{k,i}^*} = rac{L_i^*}{X_{k,i}^*}$$
 , $orall k, _i$ back

Land Property Rights and Allocation of Land

		ln(land)	
HH productivity	0.050	0.047	0.044
	(0.013)	(0.008)	(0.008)
HH productivity $ imes$		0.023	0.023
land_rights		(0.005)	(0.005)
HH productivity $ imes$			0.051
credit			(0.010)
# obs.	8,939	8,939	8,939
# households	5,095	5,095	5,095
Wave#District FE	Y	Y	Y
R^2	0.290	0.292	0.295

Standard errors are in parentheses two-way clustered at district & household levels. land.rights is the share of land under "strong" property rights at hh level; credit is a dummy indicating whether hh obtained a credit in a given year from any source back

ln(land)
ln(land)

	lal	oor	сар	ital
In(Input)	0.586	0.576	0.177	0.173
	(0.013)	(0.013)	(0.007)	(0.007)
ln(lnput) imes		0.042		0.022
land_rights		(0.008)		(0.004)
ln(Input) $ imes$		0.050		0.033
credit		(0.014)		(0.007)
# obs.	10,054	10,054	10,047	10,047
# households	5,515	5,515	5,515	5,515
Wave#District FE	Υ	Y	Y	Υ

Marginal product of land and market frictions (CES)

ln	(MP	L)
----	-----	----

	leave fallow	right sell	title	obtain free
land_rights	-0.196	-0.184	-0.034	0.216
	(0.035)	(0.029)	(0.045)	(0.042)
	0.400	0.414	0.404	0.410
credit	0.403	0.414	0.404	0.410
	(0.093)	(0.092)	(0.093)	(0.092)
# obs.	8,925	8,925	8,925	8,925
Wave#District FE	\checkmark	\checkmark	\checkmark	\checkmark

Standard errors are in parentheses two-way clustered at district & household levels.

					In(land)				
		leave	fallow	right	t sell	ti	tle	obtai	n free
HH productivity	0.119	0.085	0.079	0.081	0.076	0.114	0.109	0.126	0.121
	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)
HH productivity \times		0.043	0.043	0.055	0.055	0.023	0.023	-0.059	-0.059
land_rights		(0.004)	(0.004)	(0.003)	(0.003)	(0.005)	(0.005)	(0.005)	(0.005)
HH productivity $ imes$			0.045		0.042		0.044		0.043
credit			(0.009)		(0.009)		(0.009)		(0.009)
# obs.	8,939	8,939	8,939	8,939	8,939	8,939	8,939	8,939	8,939
# households	5,095	5,095	5,095	5,095	5,095	5,095	5,095	5,095	5,095
Wave#District FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
R^2	0.296	0.307	0.310	0.326	0.328	0.298	0.300	0.312	0.313

Standard errors are in parentheses two-way clustered at district & household levels. (back)

Land Misallocation: Across Time Variation

	In(land)				
	leave fallow	right sell	title	obtain free	
HH productivity	-0.014	-0.018	-0.013	-0.009	
	(0.014)	(0.014)	(0.014)	(0.014)	
HH productivity $ imes$	0.001	0.008	0.009	-0.023	
land_rights	(0.004)	(0.003)	(0.004)	(0.006)	
HH productivity $ imes$	0.021	0.021	0.021	0.022	
credit	(0.009)	(0.009)	(0.009)	(0.009)	
// _h_	6.042	6.042	6.042	6.042	
# obs.	6,043	6,043	6,043	6,043	
# households	2,218	2,218	2,218	2,218	
Wave#District FE	Y	Y	Y	Y	
HH FE	Y	Y	Y	Y	
R^2	0.833	0.833	0.833	0.833	

Standard errors are in parentheses two-way clustered at district & household levels back

					In(land)				
		leave	fallow	righ	t sell	ti	tle	obtai	n free
HH productivity	0.050	0.014	0.011	0.014	0.011	0.047	0.044	0.057	0.056
	(0.013)	(0.009)	(0.009)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
HH productivity \times		0.044	0.044	0.056	0.056	0.023	0.023	-0.060	-0.059
land_rights		(0.004)	(0.004)	(0.003)	(0.003)	(0.005)	(0.005)	(0.005)	(0.005)
HH productivity \times			0.052		0.050		0.051		0.050
credit			(0.009)		(0.009)		(0.010)		(0.010)
# obs.	8,939	8,939	8,939	8,939	8,939	8,939	8,939	8,939	8,939
# households	5,095	5,095	5,095	5,095	5,095	5,095	5,095	5,095	5,095
Wave#District FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
<i>R</i> ²	0.290	0.301	0.304	0.319	0.322	0.292	0.295	0.305	0.307

Standard errors are in parentheses two-way clustered at district & household levels back

Dependent variable

	rent out	head of HH in	obtained	size of	operate a
	land	agriculture	credit	a loan	business
land_rights	0.015	-0.037	0.028	0.574	0.023
	(0.006)	(0.014)	(0.013)	(0.199)	(0.015)
# obs.	7,874	11,752	11,752	448	11,752
Household FE	√	✓	√	√	√

Standard errors are in parentheses two-way clustered at district & household levels.

• Baseline calibration for the Tanzanian economy in period 2012-2014

• Some parameters recovered from data and literature

• Other parameters are calibrated to jointly match a set of moments

Direct Calibration

Parameter	Value	Source/Description
μ_I	0.807	Share of land without any document
α_{a}	0.05	Production function estimates
γ_{a}	0.294	Production function estimates
$ ho_{a}$	0.533	Production function estimates
$ ho_{e}$	0.262	Autocorellation coefficient on entrepreneurial productivity
π_E	0.09	Share of undocumented land that HH believed can be expropr.
σ	1.5	CRRA coefficient (Buera et al., 2021)
δ	0.06	Depreciation rate (Buera et al., 2021)
α_{e}	0.33	Capital share (entrepreneurs) (Buera et al., 2021)

Additional assumptions

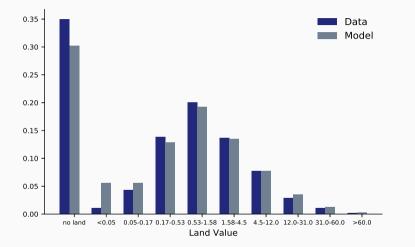
Target Moment	Data	Model	Parameter	Description
Real interest rate (%)	3.8%	3.75%	$\beta = 0.813$	Discount factor
Share of workers (% of emp.)	20.5%	20.5%	$\nu = 0.535$	Span of control
Share of farmers (% of emp.)	61.0%	61.1%	$\sigma_a = 0.09$	S.d. of prod. shock
Share of entrepren. (% of emp.)	18.5%	18.4%	$\sigma_e = 0.75$	S.d. of prod. shock
Land distribution		graph	$\pi_R = 0.13$	Probability of realloc.
Collateral/loan value	240.2%	240.4%	$\lambda_k = 1.416$	Collateral constraint

Model: Additional Assumptions

• Logarithm of productivity for each sector *s* follows a first-order autoregressive process

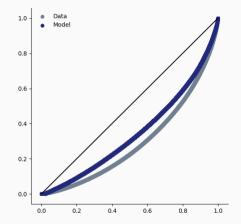
$$z_{s,t} = \rho z_{s,t-1} + \varepsilon_{s,t}$$

where $|\rho| < 1$ and ε_t is a white noise process with variance σ_{ε}^2


• Production function of entrepreneurs is Cobb-Douglas

$$y^e = \exp(z^e)(k^{\alpha_e}n^{1-\alpha_e})^{1-\nu}$$

where $(1 - \nu)$ is the span-of-control parameters, representing the share of output accruing to variable factors. Fraction α goes to capital and $(1 - \alpha)$ – to labor.


• π_R and π_E are independent of household characteristics

Distribution of Land: Model vs Data

Note: the distribution is based on price of land in mln TZS such that it is equispaced on a log scale back

Non-targeted Moments: Lorenz Curve for Consumption

Land utilization in the model is 92% (data – 88%) (back

Model Mechanism: Land

Proposition 1

Denote optimal choices of land used by farmers who owns land under communal and private property right regimes as l_c^* and l_p^* , respectively. Then, if optimal land usage is larger than household land holding, $l_p^* > l_p$, and farmers' initial conditions in private and communal part of the economy are the same (i.e. same amount of land, skills and assets):

 $I_c^* \leq I_p^*$

and for assets holdings $a_{small} < a_{large}$, given everything else the same:

$$l_p^*(a_{small}) - l_c^*(a_{small}) \geq l_p^*(a_{large}) - l_c^*(a_{large}),$$

and for the levels of agricultural productivity $z_{small} < z_{large}$:

$$l_p^*(z_{small}) - l_c^*(z_{small}) \leq l_p^*(z_{large}) - l_c^*(z_{large}),$$

and for the levels of land holdings $I_{small} < I_{large}$, given everything else the same:

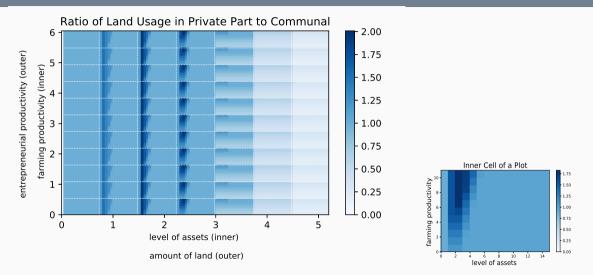
$$I_p^*(I_{small}) - I_c^*(I_{small}) \le I_p^*(I_{large}) - I_c^*(I_{large}).$$

Model Mechanism: Land

Proposition 2

Denote optimal choices of land used by farmers who owns land under communal and private property right regimes as l_c^* and l_p^* , respectively. Then, if optimal land usage is lower than household land holding, $l_p^* < l_p$, and farmers' initial conditions in private and communal part of the economy are the same (i.e. same amount of land, skills and assets):

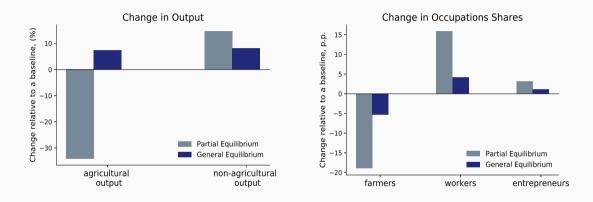
 $I_c^* \geq I_p^*$

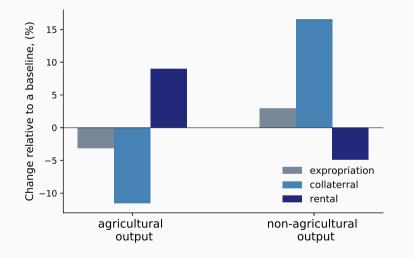

and for the levels of agricultural productivity $z_{small} < z_{large}$, given everything else the same

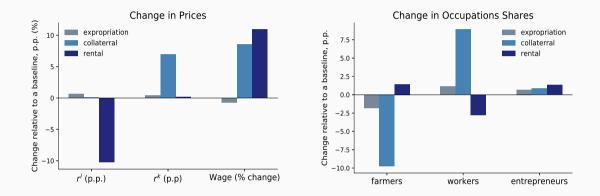
$$I_c^*(z_{small}) - I_p^*(z_{small}) \geq I_c^*(z_{large}) - I_p^*(z_{large})$$

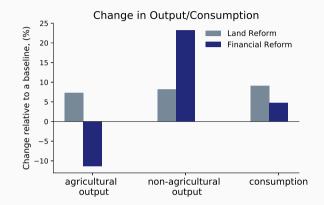

and for the levels of land holdings $I_{small} < I_{large}$, given everything else the same, we get

$$I_c^*(I_{small}) - I_p^*(I_{small}) \le I_c^*(I_{large}) - I_p^*(I_{large})$$

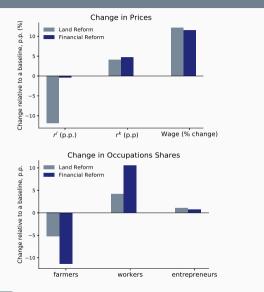

Mechanism: Land Misallocation

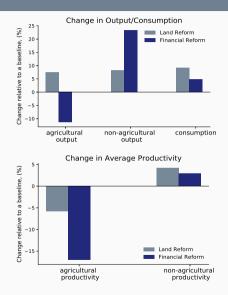

Mechanism: Labor Misallocation


Land Reform: Partial vs General Equilibrium

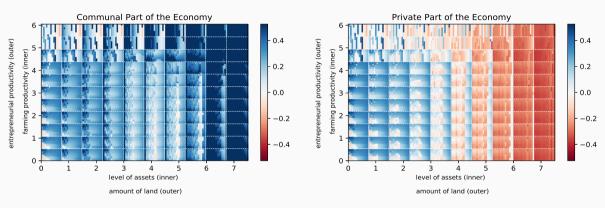

Main Channels: Output

Main Channels: Prices and Occupations

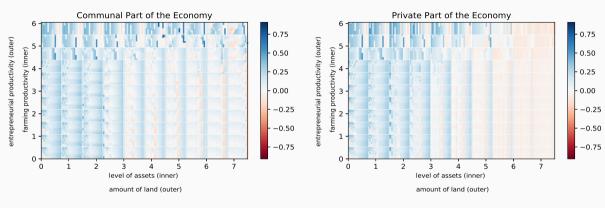

Land vs Financial Reform



Note: financial constraint relaxed so that loan to collateral same as in Sweden (83.9%)



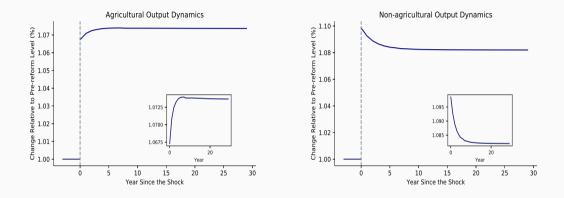
Land vs Financial Reform



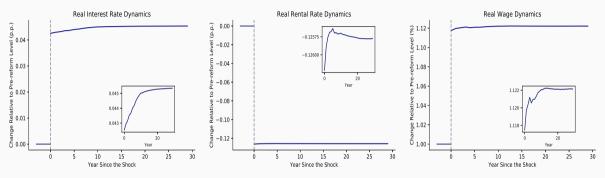
Welfare: Winners and Losers Land Reform

Overall consumption increases, while consumption inequality slightly decreases (Gini 30.9 => 29.6) (financial reform back

Welfare: Winners and Losers Financial Reform



Postreform Transition Dynamics


- Study the transition dynamics triggered by a sudden unexpected reform that eliminates communal property rights
- Once reform is implemented, everyone understands that it is permanent change
- Assume that financial frictions remain the same throughout transition period
- Simplifies actual reform episodes, which tended to be more gradual
- The dynamics following the reform are wholly endogenous

Postreform Transition Dynamics: Output

Postreform Transition Dynamics: Prices

- Communal land as insurance
- Role of collateral for agriculture \Rightarrow mechanization / \Uparrow hired labor/pre-paid rent
- Endogenous financial reform?
- Default