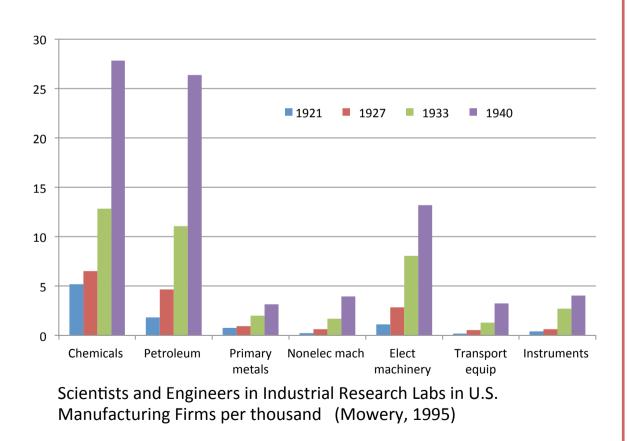
Killing the Golden Goose? The Decline of Science in Corporate R&D

Ashish Arora^a, Sharon Belenzon^b and Andrea Patacconi^c

- a. Fuqua School of Business, Duke University, and NBER
- b. Fuqua School of Business, Duke University
- c. Norwich Business School, University of East Anglia

Motivation

- Modern economic growth is distinguished by the systematic application of science to the problem of economic production. Simon Kuznets, *Modern Economic Growth: Rate, Structure and Spread*. 1966
- Advance of scientific knowledge eventually leads to advances in techniques of production and productivity growth Joel Mokyr 2002 – *Gifts of Athena*
- Private investment in creating new scientific knowledge: Nelson, JPE. 1959; Rosenberg Res Pol 1990

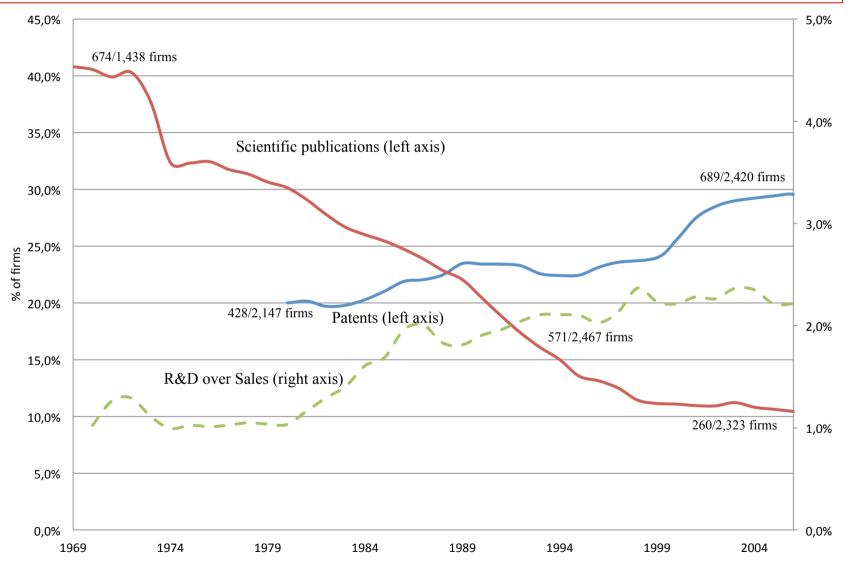

Research question

Are large firms withdrawing from investing in science?

Why?

"I am fully convinced that it has never, is not now, and never will pay commercially, to keep an establishment of professional inventors, or of men whose chief business it is to invent" ... the duties of the patent department ... (should be) ... first and foremost on examining patents or inventions submitted by the public for consideration and second on examining descriptions of inventions forwarded by the company's employees."

T.D. Lockwood, on the "Duties of the patent department", at AT&T, 1885. (cited by Lamoreaux and Sokoloff, 1999)


Internal labs for

- materials testing, quality control, trouble shooting production,
- evaluating external technology

1930s onwards invest in "experiments" and creation of new products and processes

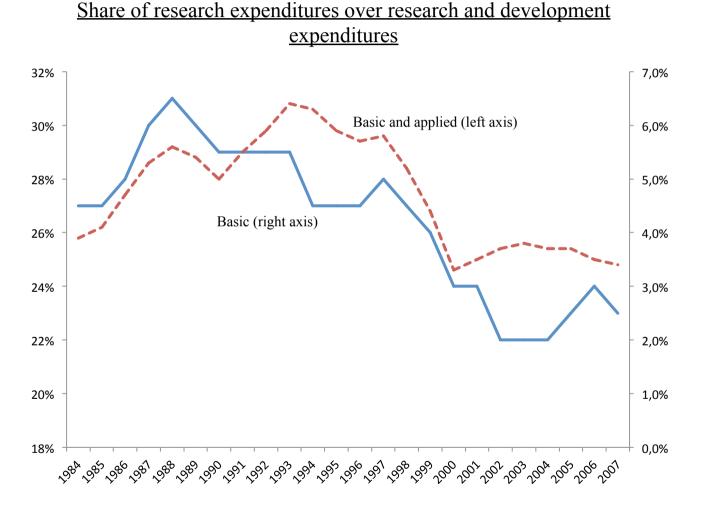

1983 private sector spent more on research than Federal government

Figure 1: Over time, firms are investing less in science but more in technology

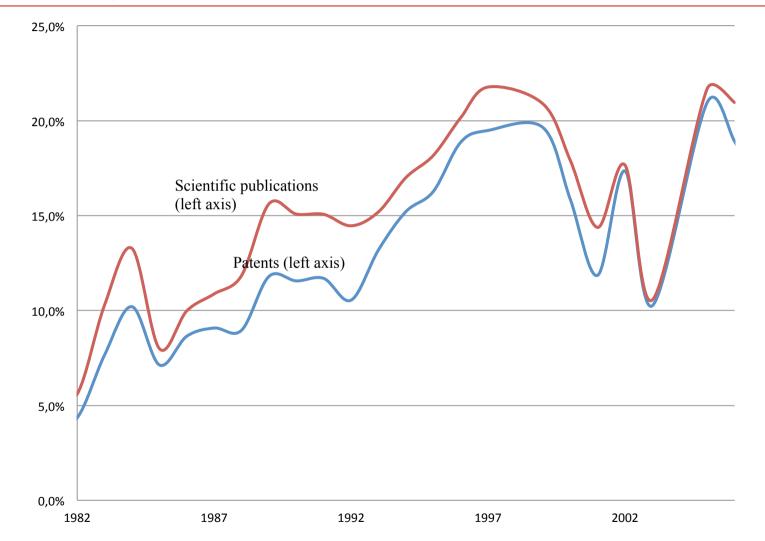

Note: This figure presents the share of publishing and patenting firms of all Compustat firms with at least one year with non-zero R&D expenditures, over time. Data source: Compustat, Web of Science, PatStat.

Figure 2: Same pattern is evident using NSF data

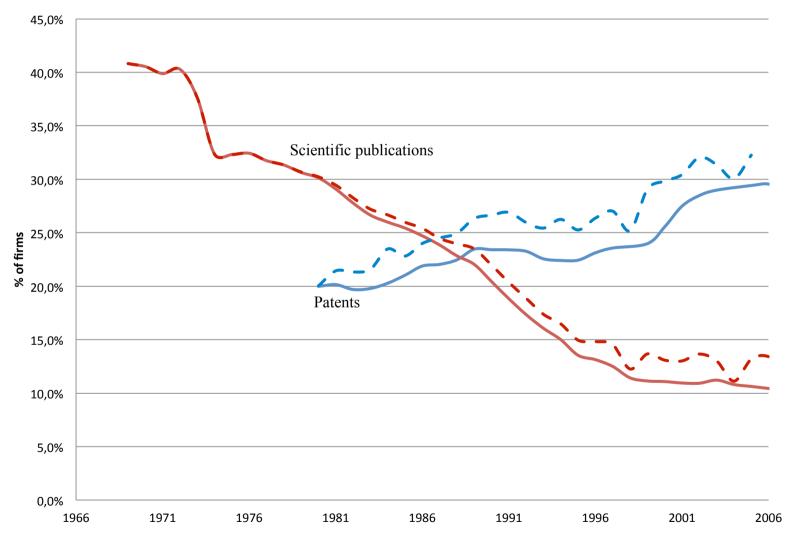

Data source: National Science Foundation/Division of Science Resources Statistics, Survey of Industrial Research and Development: 2007.

Figure 3: Over time, firms rely more on external knowledge

Note: This figure presents the share of publishing firm that acquire targets with scientific publications, and the share of patenting firms that acquire targets with patents, over time (3-year moving average). The dotted line plots the share of firm scientific articles that are coauthored with an external scientist. Data source: SDC Platinum, Web of Science, PatStat.

Figure 4: The basic trends remain - firms are moving away from research and towards development

Note: This figure combines internal and acquired publications and patents. The dashed lines present the combined shares. Data source: Compustat, SDC Platinum, Web of Science, PatStat.

Main findings

- 1980-2007: Large firms are withdrawing from science
 - Less production of internally generated research
 - Decline in the stock market value of scientific capabilities
 - Decline in the price paid for scientific capabilities in M&A

Stylized fact 1: Large firms invest less in science Not likely to reflect mere changes in publication behaviour

Stylized fact 2: Investors (and managers) pay for the fruit of science (patents)...

Stylized fact 3: ... but not for the golden goose itself (the firm's scientific capabilities)

Stylized fact 4: Results are present in broad range of industries

Stylized fact 5: Science continues to be useful for invention

Why are large firms withdrawing from science?

- 1. Science is becoming less useful for invention
- Gordon (2012)
- Distinguish between production of science and use of science
- Absorptive capacity is less important if external science is more accessible over time (better "packaging")
- 2. Difficulties in managing science internally
- Hounshell and Smith (1988), Kay, 1994; Dasgupta and David, 1994; Argyres and Silverman, 2004; Pisano, 2006; Arora et al., 2014

3. Globalization

• Two competing views: escaping competition via more innovation/science (e.g., Aghion et al., 2005; Bloom et al., 2012), vs. falling margins (Schumpeterian effect)

4. Increasing firm's focus

• Nelson (1959). Investment in science is more profitable in diversified firms

5. Changes in American institutions

- Regulatory changes affecting American publicly-listed firms (Sarbanes-Oxley Act, 2002)
- Commercialization of research in American universities (Bayh–Dole Act , 1980)
- Short-termism in American stock markets

Which mechanisms are supported?

- Decline in corporate science is likely to be linked to:
 - (3) Cost-based competition due to greater globalization (Schumpeterian effect)
 - (4) Shrinking firms' scope
- It is less likely that the decline in corporate science is linked to:
 - (1) Science being less useful for innovation
 - (5) American-specific (regulatory) changes

Data and Results

Data: Compustat, Web Of Science, USPTO, EPO, SDC Platinum

- 1. U.S. Compustat. Investment and stock market value for R&D performing publicly-listed firms.
- 2. <u>Scientific publications</u>. Publications by firms (312k)
 - Automatic and manual match of Compustat and SDC to Thomson Web of Science (affiliation field)
 - Testing mechanism (5): Match to European firms (public and private)
- 3. <u>Patents.</u> Match USPTO and EPO patents to Compustat and SDC Platinum (M&A data)
- 4. <u>Acquisitions.</u> 29,752 acquisitions from Thomson SDC for the period 1985-2007
 - Deal value, shares acquired, assets, sales, industry
 - Include deals where deal value and target assets are available
 - 2.5k publications and 115k patents
 - Track post-acquisition behavior

Measures of science

- **1. Firm publications**: scientific publications in "hard-science" journals
 - Generate a list of more important journals by field. Remove publications in trade journals and conference proceedings
 - Match journal name to CHI database to classify as basic/ applied
 - Information on journal impact factor
 - Article specific quality measure: number of citations it receives
- 2. Patent citations to science: The use of science in invention
 - The number of citations a patent makes to scientific publications in "hard-science" journals
 - Include only citations to leading journals in "hard-science"

Summary statistics for main variables

			_		Distribution	
VARIABLES	No. Obs.	Mean	Std. Dev.	10^{th}	50 th	90 th
Panel A: Compustat firms						
<i>Market value</i> (\$, mm)	11,304	5,920	20,278	33	677	12,208
Assets _{t-1} ($\$$, mm)	11,304	3,017	9,681	24	397	7,328
$Sales_{t-1}$ (\$, mm)	11,304	3,410	9,805	35	677	12,208
Publication stock	11,304	58	389	0	0	20
Publication flow	11,304	10	58	0	0	8
Patent stock	11,304	174	664	2	19	314
Patent flow	11,304	26	101	0	2	46

TABLE 1. SUMMARY STATISTICS FOR MAIN VARIABLES

□ Our sample includes Compustat R&D performing firms for the period 1980-2007, and all acquisitions by Compustat firms over the period 1985-2007 (from SDC Platinum)

□ 28% of Compustat firms publish at least one article over the sample period

□ Publishing firms are larger (\$4.3B in sales vs. \$2.8B) and more valuable (\$8.8B vs. \$4.4B), but grow more slowly (7.7% vs. 10.9%)

Large firms are withdrawing from investing in internal science over time

TABLE 2. RESEARCH AND THE STOCK MARKET VALUE OF R&D PERFORMING FIRMS						
	(1)	(2)	(3)	(4)	(5)	(6)
Dependent variable:	Pubs /R&D	Patents/ R&D	R&D/ Sales	ln(A	larket va	lue)
VARIABLES					1980- 1997	1998- 2007
Time trend	-0.042** (0.006)	-0.037** (0.006)	0.004	0.091* (0.046)		
<i>Time trend</i> \times ln(<i>Publication</i>		()				
Stock)t-1			-(-0.002** (0.0008)		
<i>Time trend</i> $\times \ln(Patent Stock)_{t-1}$				0.004** (0.001)		
In(Publication Stock)t-1				0.074** (0.014)	0.066** (0.024)	0.024 (0.027)
<i>p-value</i> for difference in estimates:				/	p-valu	e<0.01
ln(Patent Stock)t-1				0.066** (0.014)	0.095** (0.023)	0.153** (0.023)
Dummy for Research Lab					0.217* (0.091)	0.058 (0.076)
<i>p-value</i> for difference in estimates:						e <0.01
ln(Assets)t-1				0.306** (0.017)	0.266** (0.026)	0.372** (0.038)
$\ln(R\&DStock)$ t-1				0.066** (0.014)	0.049** (0.018)	0.076** (0.015)
ln(Sales)t-1	-0.403** (0.049)	-0.229** (0.049)	-0.167** (0.045)	0.488** (0.019)	0.522** (0.033)	0.422** (0.042)
Firm fixed-effects	Yes	Yes	Yes	No	No	No
R^2	0.918	0.852	0.845	0.842	0.853	0.818
Observations	11,304	11,304	11,304	11,304	5,288	6,016

□ Publications intensity (citedweighed flow of publications over R&D stock) and patents intensity are falling over time (within-firms)

□ From (1), between 1980 and 2007, publications intensity fell by 66% of average publications intensity value

R&D intensity remains stable over time

Stock market value of research (publications, dummy for whether the firm has a research lab) falls over time, but the value of development (patents) rises

Results reflect decline in corporate investment in basic research rather than changes in publication norms

Dependent variable:	Flow of s public	scientific ations	Share basic	ln(Market value)
Publications:	Basic	Applied	All	All
Time trend	-0.005** (0.002)	-0.001 (0.003)	-0.023** (0.008)	0.086* (0.046)
<i>Time</i> × ln(<i>Basic publication stock</i>)t-1				-0.019* (0.001)
<i>Time</i> $\times \ln(Applied publication stock)$ t-1				0.001 (0.001)
ln(1+Basic publication stock)t-1				0.071** (0.014)
ln(1+Applied publication stock)t-1				-0.024 (0.015)
<i>Time trend</i> $\times \ln(Patent stock)_{t-1}$				0.005** (0.001)
ln(1+Patent stock)t-1				0.064** (0.013)
$\ln(R\&Dstock)$ t-1	0.013** (0.006)	0.034** (0.011)	-0.214** (0.055)	0.071** (0.005)
ln(Sales)t-1	0.015 (0.009)	0.032** (0.013)	0.117** (0.067)	0.489** (0.019)
$\ln(Assets)$				0.308** (0.017)
R ² Observations	0.944 11,304	0.871 11,304	0.935 4,955	0.853 11,304

□ If publications are falling because disclosure is becoming more costly, we should observe a similar decline in applied journal publications

But, results are driven only by basic journal publications

Similar results if weight by
 impact factor journal – decline is
 greater in high impact journals

Better patentability should encourage disclosure rather than secrecy

Note: We distinguish between basic and applied scientific publications as indicated by the CHI journal database. Publications are classified as basic if they are published in journals with a CHI level of 4, and as applied if they are published in journals with a CHI level of 1. Publications and patents are always weighed by citations.

Withdrawal from research is evidence in all industries, but less so in Biotechnology and Chemicals

TABLE 3. INVESTMENT INOVER	TIME		,	G Fi
	(1)	(2)	(3)	class
Dependent variable:	Publications /R&D	Patents/ R&D	R&D/ Sales	base
Time trend	-0.037** (0.003)	-0.049** (0.003)	-0.001 (0.003)	pate
Time trend ×:				🗖 Ρι
Dummy for Biotechnology (1,465)	0.016**	-0.020**	0.028**	inten
	(0.005)	(0.006)	(0.006)	area
Dummy for Chemicals (3,025)	0.015** (0.004)	0.004 (0.004)	-0.002 (0.004)	
Dummy for Pharmacueticals (1,604)	-0.021**	-0.010	-0.004	🗖 🖬 Bi
<i>Dummy jor 1 hurmacucicuis</i> (1,004)	(0.005)	(0.007)	(0.006)	smal
Dummy for Electronics (4,590)	-0.005	0.019**	-0.007	inten
	(0.004)	(0.005)	(0.004)	pater
Dummy for I.T. (3,391)	-0.011**	0.002	-0.001	pater
	(0.004)	(0.005)	(0.004)	
Dummy for Semiconductors (2,013)	-0.024**	-0.005	0.013**	
	(0.004)	(0.005)	(0.004)	
Dummy for Tellecommunications (2,064)		0.029**	0.013**	
	(0.005)	(0.005)	(0.004)	
Firm fixed-effects	Yes	Yes	Yes	
R^2	0.919	0.854	0.845	
Observations	11,304	11,304	11,304	

Firms (Compustat) are classified into technology areas based on the distribution of their patents by technology fields

Publications and patents intensity fell in all technology areas

□ Biotechnology experienced a smaller decline in publications intensity, but a greater decline in patenting intensity

Consistent stock market value patterns across industries

TABLE 4. RESEARCH AN	D STOCH	K MAR	KET VA	LUE BY	Y INDUS	STRY, O	VER
		TIME					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dependent variable:			ln(A	Aarket val	ue)		
		Chemi-		Elect-		Semicon-	Telle-
VARIABLES	Biotech	cals	Pharma	ronics	I.T.	ductors	comm
<i>Time trend</i> × $\ln(Publication Stock)$ t-1	-0.001	-0.002*	-0.003*	-0.003**	-0.003**	-0.003*	-0.005**
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Time trend $\times \ln(Patent Stock)_{t-1}$	0.005** (0.002)	0.004** (0.001)	0.007** (0.002)	0.006** (0.001)	0.007** (0.001)	0.004*	0.009** (0.002)
ln(Publication Stock)t-1	0.134** (0.021)	0.154** (0.017)	0.139** (0.022)	0.114** (0.016)	0.157**	0.068** (0.022)	0.136** (0.020)
In(Patent Stock)1-1	-0.035 (0.027)	-0.002 (0.024)	-0.086** (0.029)	0.034 (0.021)	-0.038 (0.025)	(0.022) 0.148** (0.036)	-0.065* (0.031)
Time trend	-0.009 (0.013)	0.012 (0.009)	0.005 (0.015)	0.024* (0.008)	0.020* (0.009)	0.034** (0.012)	0.013 (0.011)
ln(Assets)1-1	0.315** (0.041)	0.453** (0.028)	0.320** (0.041)	0.349** (0.023)	0.310** (0.026)	0.274** (0.034)	0.228** (0.031)
ln(R&D Stock)t-1	0.021 (0.016)	0.053** (0.012)	0.070 (0.018)	0.012 (0.007)	0.007 (0.009)	0.063** (0.017)	-0.006 (0.011)
ln(Sales)t-1	0.418** (0.042)	0.323** (0.030)	0.390** (0.037)	0.543** (0.026)	0.579** (0.029)	0.505** (0.035)	0.677** (0.034)
R^2	0.846	0.828	0.833	0.836	0.816	0.851	0.836
Observations	1,465	3,025	1,604	4,590	3,391	2,013	2,064

Stock market value of publications is falling in all industries, except for Biotechnology

Stock market value of patents is rising in all industries

Withdrawal from science over time is also evident in the value of acquired firms

TABLE 5. RESEARCH AN	D TARGE	T'S FIRN	M VALUI	E OVER '	ГІМЕ
Dependent	variable: ln(Ta	arget's firm	value)		
	(1)	(2)	(3)	(4)	(5)
	All Years	1985-1997	1998-2007	Innovatin g targets	Excluding IT
<i>Time trend</i> \times ln(<i>Publication stock</i>)t-1	-0.018** (0.005)			-0.017** (0.005)	-0.019** (0.005)
<i>Time trend</i> \times ln(<i>Patent stock</i>)t-1	0.003** (0.001)			0.002 (0.001)	0.003** (0.001)
ln(1+Publication stock)t-1	0.292** (0.064)	0.169** (0.040)	-0.043 (0.069)	0.266^{**} (0.062)	0.314** (0.065)
<i>p-value</i> for difference in estimates:		p-value			
ln(1+Patent stock)t-1	0.039** (0.012)	0.069** (0.008)	0.072** (0.011)	0.033* (0.015)	0.041** (0.012)
ln(Assets)	0.592** (0.007)	0.586** (0.010)	0.595** (0.010)	0.649** (0.019)	0.598** (0.007)
ln(Sales)	0.167** (0.007)	0.177** (0.009)	0.157** (0.010)	0.077** (0.016)	0.168** (0.007)
Time trend	0.018** (0.003)			0.011* (0.005)	0.019** (0.003)
Two-digit industry dummies Country target dummies Acquisition year dummies	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes
R ² Observations	0.654 26,884	0.678 14,990	0.633 11,894	0.646 4,684	0.661 25,004

□ The implied value of research (publications) by acquired firms falls over time, but the implied value of development (patents) rises

□ Results are robust to including only target firms that either patent or publish, and to excluding acquisitions in information technology (1999-2001 IT "bubble" years)

□*Not paying anymore for the golden goose.*

Note: The sample includes all SDC Platinum deals with non-missing information on target firm value, assets and sales. The sample period is 1985– 2007.

Decline in publications activity post-acquisition in the second half of our sample

TABLE 6. PUBLI	CATIONS I	N THRI	EE-YEAR	WIND	OW ARC	DUND AC	QUISIT	TION YEA	R
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dependent variable:		Flo	wofscientif	ic publicat	tions		F	low of paten	ts
		Count		We	igh by cita	tions		Count	
		1985-	1997-	1985-	1985-	1997-			1997-
Acquisition year:	All	1996	2004	2004	1996	2004	All	1985-1996	2004
Post-acquisition dummy	-0.079** (0.023)	0.013 (0.025)	-0.198** (0.041)	-0.298 (0.200)	0.902** (0.248)	-1.839** (0.326)	1.171** (0.467)	2.036** (0.629)	0.184 (0.698)
Firm fixed-effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mean dependent variable	0.57	0.57	0.58	6.1	5.6	6.7	8.6	6.6	10.3
R ²	0.865	0.901	0.819	0.614	0.640	0.590	0.953	0.911	0.97
Observations	19,475	10,615	8,860	19,475	10,615	8,860	22,369	11,040	11,329

For each target firm, we identify post-acquisition publications by (1) continued publications under the original target firm name, or (2) publications by authors from the target firm under the acquirer name.

About 20% of post-acquisition publications are of the latter category.

Why are large firms withdrawing from science?

- 1. Science is becoming less useful for invention
- Gordon (2012)
- Distinguish between production of science and use of science
- Absorptive capacity is less important if external science is more accessible over time (better "packaging")
- 2. Difficulties in managing science internally
- Hounshell and Smith (1988), Kay, 1994; Dasgupta and David, 1994; Argyres and Silverman, 2004; Pisano, 2006; Arora et al., 2014

3. Globalization

• Two competing views: escaping competition via more innovation/science (e.g., Aghion et al., 2005; Bloom et al., 2012), vs. falling margins (Schumpeterian effect)

4. Increasing firm's focus

• Nelson (1959). Investment in science is more profitable in diversified firms

5. Changes in American institutions

- Regulatory changes affecting American publicly-listed firms (Sarbanes-Oxley Act, 2002)
- Commercialization of research in American universities (Bayh–Dole Act , 1980)
- Short-termism in American stock markets

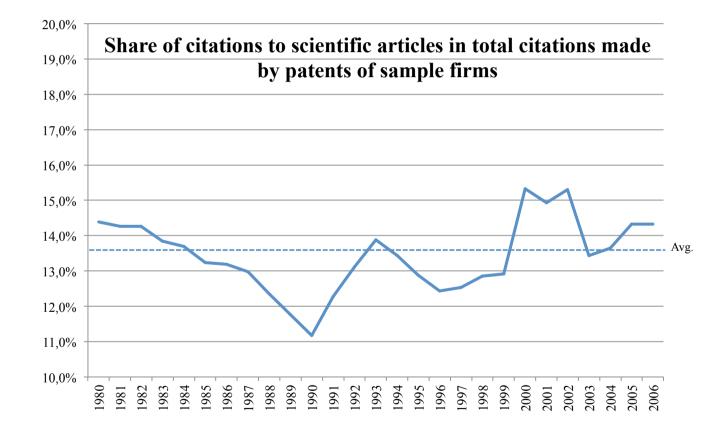
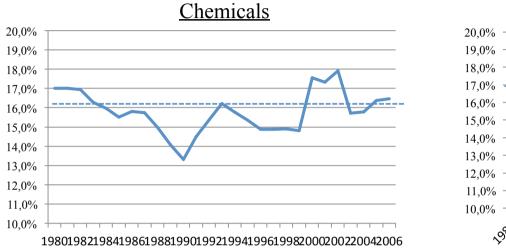
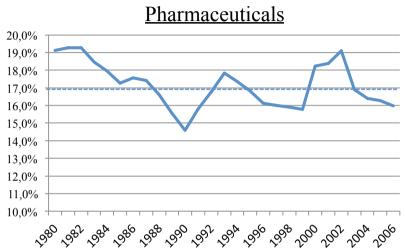
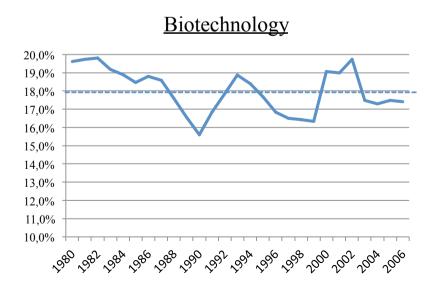

Testing mechanism (1): If science is becoming less useful for research, inventions build less upon science – <u>Not supported</u>

TABLE 7. USI			NOVATIO IC PUBLI			Y PATEN I	TS TO
	Dependent v	ariable: Nun	nber of pate	ent citation	is to scienc	ce	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Variables	All	Publishing firms	Non- publishing firms	Pharma and Biotech	Chemicals	Electronics	Telecom and IT
Time trend	0.001 (0.015)	0.021 (0.017)	-0.017 (0.020)	0.045 (0.055)	0.016 (0.040)	0.046** (0.014)	-0.001 (0.014)
Cites made	0.089** (0.011)	0.089** (0.015)	0.089** (0.013)	0.122** (0.044)	0.100** (0.029)	0.079** (0.012)	0.133** (0.017)
Firm fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.582	0.497	0.596	0.621	0.637	0.485	0.526
Observations	11,304	4,411	6,893	2,138	3,275	5,023	4,041

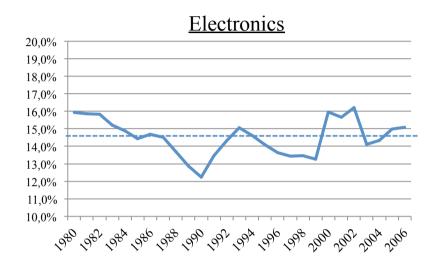
□ We include only citations to articles in "hard science" journals, excluding trade journals

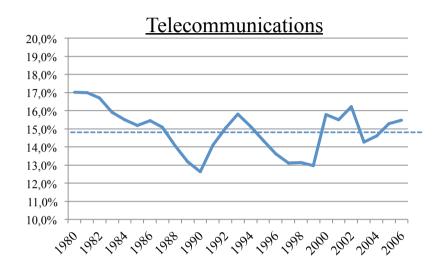

The average (firm-year) citations to scientific articles by patents are stable over time: Inconsistent with declining use of science.

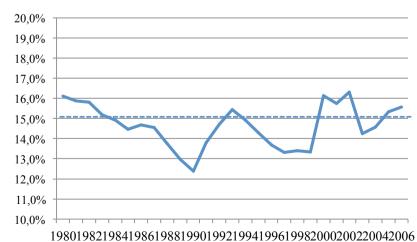

Figure 5: The use of science is stable over time (measured by patent citations to science)



Note: This figure plots the ratio between the citations a patent makes to hard science articles over the sum of citations that patent makes to other patents and to hard science articles. The sample includes all patenting Compustat firms.


Figure 5(b): A Similar time trends is evident in discrete technologies




Figure 5(c): And similar time trends is also evident in complex technologies

Information Technology 20,0% 19,0% 18,0% 17,0% 16,0% 15,0% 14,0% 13,0% 12,0% 11,0% 19801982198419861988199019921994199619982000200220042006

Testing Mechanisms (1) Value indicators are also inconsistent with the declining use of science

	CE(cont	/	(2)	
	(1)	(2)	(3)	(4)
Dependent variable:	ln(Mark)	et value)	ln(Acqu val	usition ue)
Bependent vuluole.	iii(intarik)		141	uc j
VARIABLES				
Time trend $\times \ln(Publication Stock)_{1}$	-0.002**	-0.002**	-0.018**	-0.017**
	(0.0008)	(0.0008)	(0.005)	(0.005)
<i>Time trend</i> $\times \ln(Patent Stock)_{t-1}$	0.004**	0.004**	0.003**	0.003**
	(0.001)	(0.001)	(0.001)	(0.001)
In(Publication Stock)t-1	0.074**	0.072**	0.292**	0.278**
	(0.014)	(0.014)	(0.064)	(0.063)
ln(Patent Stock)t-1	0.066**	0.063**	0.039**	0.034**
	(0.014)	(0.014)	(0.012)	(0.012)
Time trend × Cites to science		-0.001**		-0.002**
Time trend ~ Cites to science		(0.0004)	((0.0007)
Cites to science		0.039**		0.047**
		(0.010)		(0.013)
ln(Assets)t-1	0.306**	0.303**	0.592**	0.591**
	(0.017)	(0.017)	(0.007)	(0.007)
$\ln(R\&DStock)_{t-1}$	0.066**	0.059**		
	(0.014)	(0.005)		
ln(Sales)t-1	0.488**	0.503**	0.167**	0.168**
	(0.019)	(0.019)	(0.007)	(0.007)
Time trend	0.091*	0.088*		
	(0.046)	(0.046)		
R^2	0.842	0.844	0.654	0.655
Observations	11,304	11,304	26,884	26,884

Declining value of publications in both stock market value and acquisition value remain robust when controlling to patent citations to science

□ The value of more scientific patents (patents that make more cites to science) fell over time

And also corporate inventions are not relying on older science over time

Dependent variable	e: Average _I	publication	year of c	ited scienc	e
	(1)	(2)	(3)	(4)	(5)
Variables	Within- industries	Within- industries	Within- firms	Within- firms	Pharma and Biotech
Time trend	0.974** (0.012)	0.977** (0.015)	1.001** (0.018)	1.007** (0.024)	0.983** (0.036)
ln(Patent stock)t-1	-0.122*	0.123*	0.012	0.011	0.278
In(Publication stock)t-1	0.224** (0.036)	0.254** (0.071)	0.317* (0.158)	0.353* (0.191)	0.249 (0.208)
<i>Time trend</i> × ln(<i>Publication</i> <i>stock</i>)t-1	(0.063)	-0.002 (0.004) (0.063)	(0.107)	-0.002 (0.005) (0.107)	0.002 (0.006) (0.209)
ln(Sales)t-1	-0.058 (0.055)	-0.058 (0.055)	-0.668** (0.131)	-0.672** (0.132)	-0.548** (0.172)
Industry fixed effects	Yes	Yes	-	-	-
Firm fixed effects	No	No	Yes	Yes	Yes
R^2	0.580	0.580	0.691	0.691	0.786
Observations	6,251	6,251	6,251	6,251	1,789

□No exhaustion: Average age of cited papers stable

Absorptive capacity: publishing firms cite more recent science in their patents

□No decline over time

□Similar results across fields

□*Have not matched to "own" research as yet*

Testing mechanism (2): Increased globalization is associated with lower investment in research

TABLE 10. GLOBALIZATION AND INVESTMENT IN

RESEARCH, 1998-2007

	(1)	(2)	(3)	(4)	(5)
Dependent variable:	ΔΡι	ıbs	ΔPats	∆R&D	ΔCapx
$\Delta Chinese$ import penetration	(-1.725** (0.563)	2.635** (0.716)	-0.431* (0.244)	-1.989** (0.403)
Time trend	-0.011** (0.005)	0.001 (0.007)	-0.063** (0.009)	-0.010** (0.003)	0.003 (0.005)
$\Delta R \& D \ stock$	0.042* (0.019)	0.038* (0.019)	0.397** (0.055)		
$\Delta Sales$				0.474** (0.031)	0.854** (0.053)
R^2	0.002	0.005	0.038	0.260	0.337
Observations	4,354	4,354	4,354	4,354	4,354

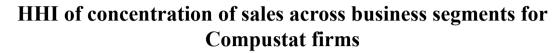
❑ Average 3-year change in Chinese import penetration is 2.2%, with a 90th pct. of 6.5%, and 99th pct. of 13.3%

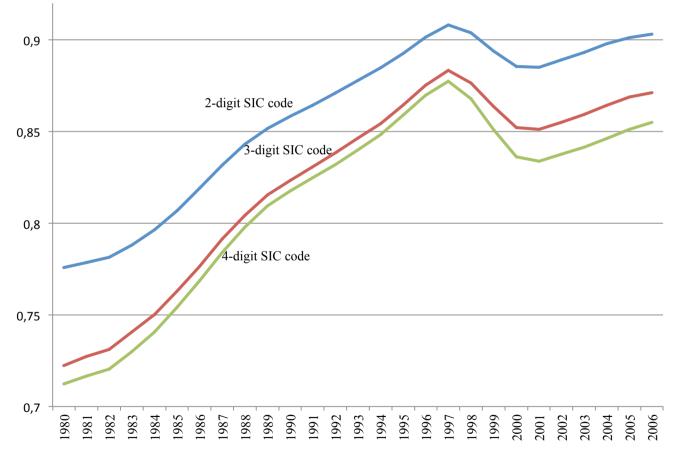
□Increase in Chinese import penetration is associated with a decline in research (publications), but with increased development (patents)

Note: Chinese import data is for the period 1998-2007. Changes are computed at the 3-year window.

Two-standard deviation increase in Chinese import is associated with a decline of almost 100% (!) of the sample mean

And globalization is also associated with declining value of research capabilities


Dependent variable: ln(Market value)							
	(1)	(2)	(3)				
		Chinese	e import				
		High	Low				
		$(75^{\text{th}} \text{ pct.})$	$(25^{\text{th}} \text{ pct.})$				
$\Delta Chinese$ import penetration \times							
In(Publication stock)t-1	-0.803**						
	(0.330)						
$\Delta Chinese import penetration \times$	0.010						
In(Patent stock)t-1	-0.018 (0.323)						
	(0.323)						
<i>Time trend</i> $\times \ln(Publication stock)$ t-1		-0.010**	0.001				
	((0.003)	(0.001)				
<i>Time trend</i> \times ln(<i>Patent stock</i>)t-1		0.010**	0.001				
		(0.002)	(0.002)				
In(Publication stock)t-1	0.084**	0.065	0.086**				
``````````````````````````````````````	(0.015)	(0.042)	(0.022)				
In(Patent stock )t-1	0.153**	0.031	0.068**				
	(0.016)	(0.033)	(0.028)				
$\ln(R\&Dstock)_{t-1}$	0.096**	0.065**	0.154**				
,	(0.010)	(0.018)	(0.013)				
Time trend		0.174	0.175*				
		(0.118)	(0.099)				
1 <i>Chinese import penetration</i>	-0.372**						
	(1.290)						
$R^2$	0.789	0.805	0.873				
Observations	3,540	1,755	2,077				


□ Consistent with the globalization mechanism, the stock market value of publications drop with increased Chinese import (with no change in the value of patents)

□ And, the declining value of publications is evident only in the industries that were mostly exposed to Chinese import

*Note*: In column 1, the estimation period is 1998–2007. In columns 2 & 3, the estimation period is 1980–2007. All regressions include lagged logged assets and sales.

## Figure 6: The scope of large American firms has declined over time





*Note:* This figure presents HHI measures of sales concentration by business segments for all Compustat firms (3-year moving average). Data source is Compustat's line of business data.

# Testing mechanism (3): Shrinking firms' scope associated with lower benefits from investing in science

TABLE 12. NARROWER FIRM SCOPE									
	(1)	(2)	(3)	(4)	(5)				
Dependent variable:	ΔPubs	ΔPats	∆R&D	ln(Marke	et value)				
				∆HHI SIC>0	∆HHI SIC≤0				
AHHI SIC	-0.323* (0.145)	-0.113 (0.097)	-0.060 (0.048)						
Time trend	-0.022 (0.016)	-0.006 (0.004)							
$\Delta R \& D stock$	0.240 (0.161)	0.378** (0.062)							
ln(Sales)t-3	0.107** (0.040)	0.036** (0.015)	0.002 (0.007)						
$\Delta Sales$			0.391** (0.039)						
Time trend $\times \ln(Publication \ stock)$ t-1			(	-0.004** (0.001)	-0.001 (0.001)				
<i>Time trend</i> $\times \ln(Patent stock)$ t-1				0.006** (0.001)	0.004** (0.001)				
n(Publication stock)t-1				0.109** (0.020)	0.051** (0.020)				
In(Patent stock )t-1				0.030 (0.023)	0.077** (0.018)				
$R^2$	0.039	0.113	0.282	0.887	0.827				
Observations	7,573	7,573	7,558	2,609	6,653				

*Note:* Changes are at the three-year window. HHI is based on Compustat line-ofbusiness data. All regressions include industry dummies. Columns 4-5 include controls for assets, R&D stock and sales. Between 1980 and 2007,
 HHI of sales concentration by industry segments fell by 18%

□ HHI of sales concentration by industry segments for publishing firms is 11% lower than for non-publishing firms

❑ Moving from the lowest to the highest deciles of shrinking scope is associated with a drop of 87% of sample average decline in publications

□ Value of publications is declining for firms that narrow their scope over time

## Testing mechanism (4): America specific effects (regulatory changes of American institutions): Not supported.

TABLE 13. INVESTMENT IN SCIENCE BY EUROPEAN FIRMS										
	(1)	(2)	(3)	(4)	(5)					
Dependent variable:	Flow of publications									
	All	Non- missing sales	Public vs. private	Sample years >10	First pub< 1980					
Time trend	-0.046** (0.011)	-0.111** (0.030)	-0.045** (0.011)		-0.212** (0.050)					
ln(Sales)		0.322** (0.137)								
Time trend × Dummy for pubilc			-0.012 (0.024)							
Firm fixed-effects	Yes	Yes	Yes	Yes	Yes					
R ²	0.724	0.676	0.724	0.722	0.719					
Observations	38,018	15,135	38,018	11,451	2,999					

European firms display similar reductions in investment in science.

□ From Column 1, in a 10year period, publishing drops by 39% of sample average.

□ From Column 5, from 1980 to 2007, publications dropped by 56%

*Note:* Match publications and patents to all European firms (Amadeus, private and public). 58k articles by 3,642 firms, and 210k patents (USPTO) by 10,053 firms. 31% of innovating firms (patenting or publish) publish at least once. Financial data is available only from 1997, not for all firms. R&D is never reported.

### Conclusions

- Our results indicate that large firms are withdrawing from research
  - Large firms are investing less in research, and the stock market value of research is declining
  - Same patterns are reflected in acquisitions price: Managers are less willing to pay for scientific capability, and acquired entity reduces publication after acquisition
  - Also consistent with evidence in the literature on the increase in alliances and licensing, as well as qualitative evidence on the decline in corporate research
- Possible mechanism may be linked to cost-based competition and shrinking firms' scope, but not to a decline in the use of science or to American-specific effects
- But other possible explanations remain
  - Division of innovative labor

### Conclusions (cont'd)

- <u>Pessimistic interpretation</u>: Private research is in decline
  - Established companies can no longer emulate firms such as DuPont, AT&T or Merck
  - Increased importance of public funding?
- <u>Less pessimistic interpretation</u>: Established firms source inventions from outside
  - Reallocation of research from large corporate labs to more efficient organizations
  - Even so, if acquirers will not pay for scientific research, startups might have to invest to convert their research commercially

### Next steps

- Update the data for 2014.
  - Examine the effect of the 2008 financial crisis on research
  - Fall of the financial sector triggers more investment in research?
- Who benefits from corporate research (publications) and how those benefits change over time?
- Textual match between firm publications and their patents.
  - Examine how commercialization strategies of science have changed over time