The beta of the value factor beta predicts the value premium

Nigel J. Barradale and Soeren Hvidkjaer

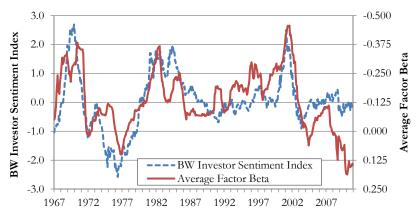
Copenhagen Business School

Presentation at the BEROC Conference

June2 2015

Background

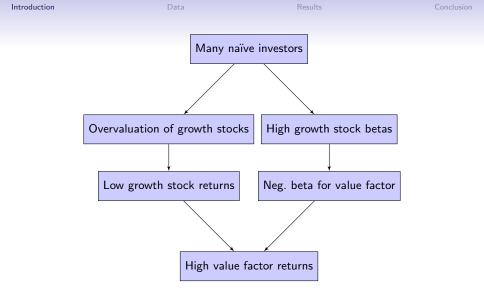
- Many firm value/growth-related characteristics predict cross-sectional stock returns:
 - B/M, P/E, long-term price changes, level of investment, level of external financing, asset growth etc.
- The standard rational explanation is that such predicability reflects differences in risk
- The standard sub-rational explanation is that naïve investors have excess demand (driven by preferences or biased information processing) for stocks with certain characteristics ("glamour stocks"). This leads to overpricing in the current period and low future returns, as prices revert to fundamental values. Conversely for value stocks, as these are shunned by investors.


A first look at risk: Betas

- We examine long-short factor portfolios based on seven different value-related characteristics previously shown to predict returns
 - As the growth/glamour stocks underperform, they are in the short leg
 - As the value/neglected stocks outperform, they are in the long leg
 - The beta of the factor portfolio is thus the beta of the value stocks minus the beta of the growth stocks
- Finding: All factor portfolios exhibit negative betas
 - Inconsistent with the CAPM predicting a positive relationship between beta and average returns

The dynamics of factor betas

- This could be reconciled with the CAPM framework if the beta and expected return co-move positively. I.e., value stocks could have unconditionally low betas in the cross-section if, conditional on the betas being high in the time-series, the expected returns are also high.
- This is our main test.
- We find that rather than co-moving positively, the beta of value factor portfolios *negatively* predicts future returns. The contradiction is worsened.
- Is this consistent with the behavioral explanation for the value premium?


BW Investor Sentiment and Average Factor Beta

 The Average Factor Beta is calculated monthly, based on daily observations over the previous 12 months, and using 7 different factors (inverted scale). The BW Investor Sentiment Index is the first principal component of: NYSE trading volume; the dividend premium; the closed-end fund discount; the number of IPOs; the first-day return on IPOs; and the equity share in new issues. It is orthogonalized with respect to macroeconomic variables.

An informal sub-rational model

- Assume the existence of naïve investors whose trading affects prices and who have
 - a preference for growth/glamour stocks
 - correlated high-frequency market timing behavior
- As these investors vary their allocation to stocks, overall stock market prices are affected and glamour stocks more so
 - $\rightarrow\,$ Glamour stocks will exhibit high covariation with other glamour stocks
 - $\rightarrow\,$ Glamour stocks will exhibit high market betas
- If the activity level of naïve investors is time varying (at a lower frequency), then the glamour stocks will exhibit time-varying covariation and market beta.

Key result: Time series regressions show that a more negative beta across factors predicts higher factor returns over the next two years

Predictive variables

We construct 4 other variables hypothesized to be related to mispricing, hence predicting future returns

- Factor volatility relative to market volatility
 - More naïve investors → greater comovement of similar-characteristic stocks
- Dispersion of across factors of beta and relative volatility
 - Naïve investors' preferences is likely correlated with different characteristics at different times
- The first principal component of the 4 variables

Factor portfolio formation procedure

- Factors either downloaded from Kenneth French's website or calculated using HML procedure
- Factors formed 30 June based on prior year's accounting data, 70/30 splits based on NYSE cut-off points, value-weighted in small and big portfolios, etc
- Returns for July 1967 December 2010

The characteristics

Analyze seven value factors:

- Book-to-Market (HML from KF)
- Long-Term Reversal (De Bondt Thaler, 1985; from KF)
- Cash Earnings Yield
- Net Stock Issuance (Fama French 2008)
- Net Operating Assets (Hirshleifer Hou Teoh Zhang 2004)
- Assets Growth (Cooper Gulen Schill 2008)
- Investment-to-Assets (Chen Novy-Marx Zhang 2011)

And a Composite Factor

• Simple average of the seven factor returns

Factor Summary Statistics (Monthly)

	Mean	t(Mean)	Std.Dev.	Sharpe
Market Premium (Rm-Rf)	0.429	(2.10)	4.66	0.319
Book-to-Market (HML)	0.405	(3.05)	3.03	0.463
Long-Term Reversal	0.332	(2.90)	2.61	0.440
Cash Earnings Yield	0.436	(3.04)	3.27	0.462
Net Stock Issuance	0.430	(4.38)	2.24	0.665
Net Operating Assets	0.325	(5.19)	1.43	0.787
Assets Growth	0.380	(4.27)	2.03	0.648
Investment-to-Assets	0.276	(2.78)	2.26	0.422
Composite Factor	0.369	(4.69)	1.79	0.712

Factor returns are positively correlated

Monthly factor return cross-correlations

	HML	LTRev	CEY	NSI	NOA	AGr
Book-to-Market (HML)	1.000					
Long-Term Reversal	0.421	1.000				
Cash Earnings Yield	0.898	0.285	1.000			
Net Stock Issuance	0.620	0.160	0.631	1.000		
Net Operating Assets	0.026	0.184	-0.073	0.116	1.000	
Assets Growth	0.718	0.500	0.597	0.617	0.261	1.000
Investment-to-Assets	0.678	0.345	0.629	0.636	0.429	0.696

Predictor Variables: Construction and summary statistics

- Beta and volatility for each portfolio are computed monthly based on daily data.
- Predictor variables are computed by averaging and standard deviationing across factor portfolios.

	Mean	Std.Dev.	Autocorr
Average Factor Beta	-0.126	0.153	0.778
Average Factor Relative Vol	0.427	0.144	0.603
Stdev (Factor Betas)	0.170	0.070	0.451
Stdev (Fact Relative Vols)	0.116	0.056	0.517
First Principal Component	0.000	1.000	0.587

Table 5A

Time Series Regressions Predicting Next Month's Factor Returns: Beta

$$R_t = c + d \cdot \text{Predictor}_{t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$$

	d	t(<i>d</i>)	R^2
Book-to-Market (HML)	-1.815	(-1.71)*	0.178
Long-Term Reversal	-2.019	(-2.20)**	0.107
Cash Earnings Yield	-2.054	(-1.92)*	0.263
Net Stock Issuance	-1.661	(-2.49)**	0.338
Net Operating Assets	-1.680	(-3.68)***	0.063
Assets Growth	-1.829	(-2.75)***	0.200
Investment-to-Assets	-3.046	(-3.81)***	0.170
Composite Factor	-2.015	(-3.08)***	0.219

Predictor: Average Factor Beta

Time Series Regressions Predicting Next Month's Factor Returns: FPC

$$R_t = c + d \cdot \text{Predictor}_{t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$$

	d	t(<i>d</i>)	R^2
Book-to-Market (HML)	0.434	(3.25)***	0.191
Long-Term Reversal	0.317	(2.79)***	0.108
Cash Earnings Yield	0.430	(2.97)***	0.272
Net Stock Issuance	0.301	(3.22)***	0.344
Net Operating Assets	0.224	(3.84)***	0.056
Assets Growth	0.251	(2.93)***	0.197
Investment-to-Assets	0.430	(4.61)***	0.165
Composite Factor	0.341	(4.39)***	0.226

Predictor: First Principal Component

Longer-Horizon Return Predictability

Regression Predicting the Composite Factor Return / months ahead:

 $R_t = c + d \cdot \text{Predictor}_{t-l} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$

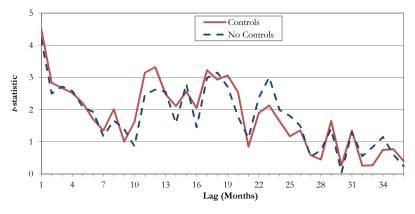


Figure 2

Out-of-sample predictability

Rolling regressions for $\tau \leq t$: $R_{\tau} = c_t + d_t \cdot \text{FactorCovar}_{\tau-1} + u_{\tau}$ Prediction each time period t: $\hat{R}_{2t,t+1} = c_t + d_t \cdot \text{FactorCovar}_t$

Estimation Period (Years):	5	10	20	30
Panel A: Out-of-Sampl	e MSPE-A	Adjusted <i>t</i>	-statistics	
Average Factor Beta Avg Factor Relative Volatility StDev (Factor Betas) StDev (Factor Relative Vols) First Principal Component	2.09** 3.37*** 1.59* 2.55*** 3.14***	2.56*** 4.27*** 1.69** 3.24*** 3.85***	2.60*** 4.06*** 1.78** 2.83*** 3.56***	2.50*** 3.53*** 1.12 1.98** 2.81***

Panel B: Out-of-Sample R²-statistics

Average Factor Beta	1.21%	2.34%	3.06%	3.70%
Avg Factor Relative Volatility	2.95%	4.49%	5.31%	5.74%
StDev (Factor Betas)	0.60%	0.76%	1.09%	0.42%
StDev (Factor Relative Vols)	1.61%	3.60%	3.85%	2.93%
First Principal Component	3.33%	5.13%	5.91%	5.82%

Introduction

Conclusion

Alternative sentiment measures

- Baker-Wurgler (2006): first principal component of: the closed-end fund discount; the number of IPOs; the equity share in new issues; NYSE trading volume (L12); the dividend premium (L12); and the first-day return on IPOs (L12).
- Index of Consumer Sentiment from the University of Michigan
- American Association of Individual Investors Bull-Bear Spread (since 1987).

Stambaugh, Yu and Yuan (2012) find that the BW index and the Consumer Sentiment index predict the premia related to net stock issuance, net operating assets, asset growth and investment-to-assets.

Investor sentiment and factor returns

 $R_t = c + d \cdot \text{Sentiment}_{t-1} + e \cdot \text{FPC}_{t-1} + f \cdot \text{RmRf}_t + g \cdot \text{SMB}_t + h \cdot \text{MOM}_t + u_t$

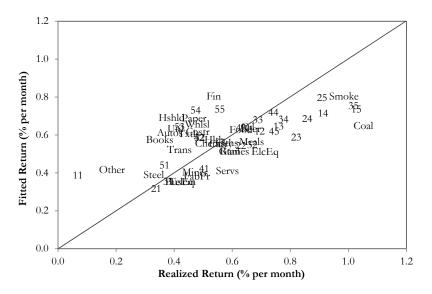
	BWS	Sent	BWS	$Sent^\perp$	Mic	hSent	AAIIS	Sent
Panel A: Without Controls								
Sent, d	0.173	0.069	0.200	0.100	0.558	0.030	2.370	1.742
t(d)	(1.92)*	(0.80)	(2.18)**	*(1.16)	(0.72)	(0.04)	(3.14)**	*(2.39)**
FPC, e		0.358		0.350		0.376		0.413
t(e)		(4.02)***		(3.97)***		(4.25)***		(3.58)***
Rsq	0.009	0.046	0.012	0.047	0.002	0.044	0.038	0.090
Nobs	521	521	521	521	521	521	281	281
			Pane	B: With C	Controls			
Sent, d	0.118	0.021	0.141	0.048	0.456	-0.036	2.500	1.919
t(d)	(1.39)	(0.25)	(1.66)*	(0.59)	(0.68)	(-0.06)	(4.01)**	*(3.13)***
FPC, e		0.335		0.328		0.342		0.392
t(e)		(4.43)***		(4.37)***		(4.51)***		(4.07)***
Rsq	0.195	0.227	0.196	0.227	0.191	0.226	0.240	0.287
Nobs	521	521	521	521	521	521	281	281

Cross-sectional evidence

- Do the sensitivities to the Predictors explain the cross-section of average stock returns?
- Standard Fama-MacBeth method
- Test assets: 25 FF (5BTM × 5Size) + 30 Industry Portfolios
 - Most models get an R^2 close to zero (Lewellen Nagel Shanken 2010)
 - Lewellen et al. find that the FF 3-Factor model gets an R^2 of 31%

Cross-sectional evidence

First Stage: Time-Series Regressions for each portfolio *i*: $\begin{aligned} R_{i,t} - Rf_t &= \\ c_i + \beta_{PREDi} \cdot \text{Predictor}_{t-1} + \beta_{HMLi} \cdot \text{HML}_t + \beta_{RmRfi} \cdot \text{RmRf}_t + \beta_{SMBi} \cdot \text{SMB}_t + u_{i,t} \end{aligned}$ Second Stage: Cross-Sectional Regressions for each month *t*: $\begin{aligned} R_{i,t} - Rf_t &= \\ \lambda_{0t} + \lambda_{PREDt} \cdot \beta_{PREDi} + \lambda_{HMLt} \cdot \beta_{HMLi} + \lambda_{RmRft} \cdot \beta_{RmRfi} + \lambda_{SMBt} \cdot \beta_{SMBi} + v_{i,t} \end{aligned}$ Third Stage: Compare Actual Average to Predicted Return for each Portfolio *i*:


 $\overline{\frac{R_{i}-R_{f}}{\lambda_{0t}}+\lambda_{PREDt}}\cdot\beta_{PREDi}+\overline{\lambda_{HMLt}}\cdot\beta_{HMLi}+\overline{\lambda_{RmRft}}\cdot\beta_{RmRfi}+\overline{\lambda_{SMBt}}\cdot\beta_{SMBi}+w_{i}$

Fama-MacBeth Regressions

FF25 + 30 Industry Portfolios as Test Assets						
Predictor	$\overline{\lambda_{PREDt}}$	$\overline{\lambda_{HMLt}}$	$\overline{\lambda_{RMRFt}}$	$\overline{\lambda_{SMBt}}$	R ²	
(None)		0.264	-0.423	0.125	0.278	
		(1.60)	(-1.36)	(0.85)		
First Principal	0.643				0.360	
Component	(2.38)**					
	0.662		-0.272	0.123	0.439	
	(2.65)***		(-0.95)	(0.84)		
	0.660	0.320	-0.272	0.123	0.439	
	(2.93)***	(1.89)*	(-0.92)	(0.84)		

Table 13C

Realized vs. fitted returns: 1-factor FPC model

- We find:
 - Value-growth factor portfolios exhibit negative market betas across seven different definitions of value-growth
 - The more negative the market betas, the higher the subsequent factor returns
 - Similarly for factor relative volatility and the dispersion in factor covariances
- This is consistent with a time-varying activity level among naïve investors who effectively attempt market timing
 - Their trading generates negative market betas, high factor volatility, high covariance dispersion, and positive expected returns on the factors
 - The constructs are correlated with the Baker-Wurgler Investor Sentiment Index, but are more successful in predicting stock returns

Introduction

Data

Result

Conclusion

Predictor Variables: Correlations

	Avg(Beta)	Avg(RVol)	Std(Beta)	Std(RVol)
Average Factor Beta	1.000			
Average Factor Relative Vol	-0.445	1.000		
Stdev (Factor Betas)	-0.077	0.471	1.000	
Stdev (Fact Relative Vols)	-0.248	0.694	0.599	1.000
First Principal Component	-0.499	0.881	0.733	0.879

Table 5B

Factor Market Betas are negative

	Daily Observations		1	Monthly	Observations
	Beta	(t-stat)		Beta	(t-stat)
Book-to-Market (HML)	-0.155	(-12.28)	_	-0.207	(-5.29)
Long-Term Reversal	-0.067	(-5.79)	_	-0.035	(-0.96)
Cash Earnings Yield	-0.126	(-9.04)	_	-0.189	(-4.69)
Net Stock Issuance	-0.192	(-28.23)	_	-0.243	(-11.30)
Net Operating Assets	0.021	(4.37)	_	-0.041	(-2.71)
Assets Growth	-0.147	(-19.91)	_	-0.180	(-8.54)
Investment-to-Assets	-0.108	(-11.18)	_	-0.146	(-6.02)
Composite Factor	-0.110	(-15.45)	-	-0.145	(-6.84)

Time Series Regressions Predicting Next Month's Factor Returns (II)

$$R_t = c + d \cdot \text{Predictor}_{t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$$

	d	t(<i>d</i>)	R^2
Book-to-Market (HML)	2.714	(3.11)***	0.187
Long-Term Reversal	2.113	(2.86)***	0.107
Cash Earnings Yield	2.864	(3.13)***	0.270
Net Stock Issuance	1.766	(3.16)***	0.339
Net Operating Assets	1.360	(3.55)***	0.050
Assets Growth	1.559	(2.65)***	0.194
Investment-to-Assets	2.820	(4.46)***	0.161
Composite Factor	2.171	(4.26)***	0.221

Predictor: Average Factor Relative Volatility

Time Series Regressions Predicting Next Month's Factor Returns (III)

$$R_t = c + d \cdot \text{Predictor}_{t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$$

)	
d	t(<i>d</i>)	R^2
3.667	(2.01)**	0.177
1.714	(1.07)	0.096
3.388	(1.83)*	0.260
2.450	(1.99)**	0.332
1.313	(1.55)	0.035
1.324	(1.14)	0.184
2.508	(2.02)**	0.135
2.338	(2.30)**	0.199
	3.667 1.714 3.388 2.450 1.313 1.324 2.508	3.667 (2.01)** 1.714 (1.07) 3.388 (1.83)* 2.450 (1.99)** 1.313 (1.55) 1.324 (1.14) 2.508 (2.02)**

Predictor: StDev (Factor Betas)

Time Series Regressions Predicting Next Month's Factor Returns (IV)

$$R_t = c + d \cdot \text{Predictor}_{t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$$

	d	t(<i>d</i>)	R^2
Book-to-Market (HML)	7.130	(3.00)***	0.187
Long-Term Reversal	4.794	(2.31)**	0.104
Cash Earnings Yield	6.473	(2.58)***	0.267
Net Stock Issuance	4.714	(2.61)***	0.340
Net Operating Assets	3.239	(2.73)***	0.047
Assets Growth	3.790	(2.58)**	0.192
Investment-to-Assets	5.997	(3.48)***	0.151
Composite Factor	5.162	(3.70)***	0.216

Predictor: StDev (Factor Relative Vols)

Longer-Horizon Return Predictability

Regression Predicting the Composite Factor Return, R_t : $R_t = c + d \cdot [L_a - L_b]$ Predictor $+e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$

Predictor	1	2–7	1–12	13–24	25–36
Average Factor Beta	-2.015	-1.653	-1.624	-1.556	-0.996
	(-3.08)***(-2.40)**	(-2.23)**	(-2.38)**	(-1.70)*
Avg Factor Relative Volatility	2.171	1.766	2.366	2.142	0.097
	(4.26)***	(2.38)**	(2.82)***	(2.86)***	(0.16)
StDev (Factor Betas)	2.338	4.557	5.713	4.930	-0.230
	(2.30)**	(2.96)***	(2.84)***	(2.38)**	(-0.14)
StDev (Factor Relative Vols)	5.162	6.585	9.594	6.182	0.214
	(3.70)***	(3.41)***	(4.13)***	(2.77)***	(0.12)
First Principal Component	0.341	0.298	0.346	0.264	0.029
	(4.39)***	(3.30)***	(3.56)***	(3.00)***	(0.44)

Predictor Calculated Over Month Lags:

Predictability of own factor covariances

The factors' own covariances have weaker predictive power...

 $R_{i,t} = c + d \cdot \text{Predictor}_{i,t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$

	d	t(<i>d</i>)	R^2
Book-to-Market (HML)	-1.147	(-1.72)*	0.179
Long-Term Reversal	-0.659	(-1.27)	0.098
Cash Earnings Yield	-1.320	(-2.07)**	0.265
Net Stock Issuance	-0.641	(-1.22)	0.329
Net Operating Assets	-0.216	(-0.38)	0.032
Assets Growth	-1.439	(-2.64)***	0.199
Investment-to-Assets	-2.292	(-3.19)***	0.163
Pooled	-0.984	(-2.29)**	0.108

Predictor: Beta of the LHS factor

Predictability of other factor covariances

 \ldots as much of the predictive power comes from the covariances of the other factors.

 $R_{i,t} = c + d \cdot \text{Predictor}_{-i,t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$

	d	t(<i>d</i>)	R^2
Book-to-Market (HML)	-2.010	(-1.78)*	0.174
Long-Term Reversal	-2.512	(-2.63)***	0.107
Cash Earnings Yield	-1.942	(-1.82)*	0.263
Net Stock Issuance	-1.570	(-2.59)***	0.339
Net Operating Assets	-1.515	(-3.82)***	0.064
Assets Growth	-1.764	(-2.69)***	0.198
Investment-to-Assets	-2.998	(-3.88)***	0.167
Pooled	-2.008	(-3.31)***	0.115

Predictor: Avg. beta of 6 other factors

Predictability of own and other factor covariances

And controlling for other factors' covariances, own covariances do not predict returns.

$$R_{i,t} = c + d \cdot \operatorname{Predictor}_{i,t-1} + e \cdot \operatorname{Predictor}_{-i,t-1} + u_t$$

Predictors: Own beta and avg. beta of 6 other factors

	d	t(<i>d</i>)	е	t(<i>e</i>)	R ²
Book-to-Market (HML)	-0.758	(-0.95)	-0.789	(-0.56)	0.009
Long-Term Reversal	0.115	(0.19)	-2.370	(-2.12)**	0.016
Cash Earnings Yield	-0.920	(-1.11)	-0.265	(-0.23)	0.006
Net Stock Issuance	-0.198	(-0.30)	-1.680	(-2.33)**	0.017
Net Operating Assets	0.273	(0.49)	-1.692	(-4.23)***	0.040
Assets Growth	-0.753	(-0.95)	-1.096	(-1.22)	0.021
Investment-to-Assets	-0.662	(-0.70)	-2.404	(-2.43)**	0.042
Pooled	-0.383	(-0.99)	-1.614	(-3.18)***	0.015

Predicting Decile Portfolio Returns

 $R_t - Rf_t = c + d \cdot \text{Predictor}_{t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$

	Decile					
	1	2	9	10	10–1	
Portfolio	Return Pred	icted by BV	V Investor S	entiment Level		
Book-to-Market	-0.049	0.097	-0.019	0.060	0.109	
Long-Term Reversal	-0.057	-0.049	0.096	-0.024	0.033	
Cash Earnings Yield	-0.060	-0.026	0.072	-0.059	0.001	
Net Stock Issuance	-0.224***	-0.056	0.131	-0.115	0.110	
Net Operating Assets	-0.270***	0.131*	0.074	0.048	0.318***	
Assets Growth	-0.300***	-0.071	-0.090	-0.106	0.194	
Investment-to-Assets	-0.189**	-0.109	0.104	-0.094	0.095	
Composite Factor	-0.164**	-0.012	0.053	-0.041	0.123	

Table 12C

Predicting Decile Portfolio Returns

 $R_t - Rf_t = c + d \cdot \text{Predictor}_{t-1} + e \cdot \text{RmRf}_t + f \cdot \text{SMB}_t + g \cdot \text{MOM}_t + u_t$

		Decile					
	1	2	9	10	10–1		
Portfolio	o Return Pre	dicted by Firs	t Principal C	Component			
Book-to-Market	-0.226***	0.003	0.312**	0.298**	0.524***		
Long-Term Reversal	-0.282***	0.012	0.327***	0.346**	0.628***		
Cash Earnings Yield	-0.277***	-0.049	0.296**	0.306*	0.583**		
Net Stock Issuance	-0.312***	-0.132*	0.236**	0.080	0.392***		
Net Operating Assets	-0.321***	-0.025	0.191**	0.244**	0.565***		
Assets Growth	-0.377***	-0.020	0.112	0.149	0.526***		
Investment-to-Assets	-0.326***	-0.253***	0.242**	0.079	0.405***		
Composite Factor	-0.303***	-0.066**	0.245***	0.215***	0.518***		

Table 12B

What determines the value factor betas?

Average Factor Beta and Past Market Premium. This table presents the Average Factor Beta according to whether the prior Short-Term (1–6 month) and Long-Term (13–36 month) equity premium was positive or negative.

	Pos. Short-Term		_	Neg. Short-Term			Difference	
	Beta	<i>t</i> -stat	-	Beta <i>t</i> -stat		_	Beta	<i>t</i> -stat
Pos. Long-Term	-0.073	(-5.13)		-0.130	(-5.39)		0.057	(2.45)
Neg. Long-Term	0.019	(1.27)		-0.042	(-2.80)		0.061	(3.84)
Difference	-0.092	(-5.26)		-0.088	(-3.18)		-0.004	(-0.13)

The dynamics of factor betas

- The factor betas exhibit considerable time variation
 - Consistent with time variation in naïve investors' activity level
- The factor betas are highly negatively correlated with the Baker-Wurgler (2006, 2007) Investor Sentiment Index
- This suggests that the negative factor betas could be an alternative proxy for investor sentiment

The behavioral hypothesis and test

If the trading of naïve investors affects systematic risk in the manner suggested, the key prediction is that factor returns will be higher in periods following strongly negative factors betas than in periods following less negative (or positive) factor betas.

- More active naïve investors ightarrow
 - factor betas are more negative
 - factor portfolios are more mispriced \rightarrow greater subsequent reversals
- **Key result**: *Time series regressions show that a more negative beta across factors predicts higher factor returns over the next two years*
 - Inconsistent with the conditional CAPM.