Mind The Gap: What Explains Changes in Relative Timing of Marriage and Fertility ?

Lev Lvovskiy¹

¹The University of Iowa

BEROC, March 2017

Since the 1950s...

- 1. Increase in the age at first marriage.
- 2. Increase in the age at first **birth**.
- 3. Increase in the **nonmarital fertility**.

Since the 1950s...

- 1. Increase in the age at first marriage.
- 2. Increase in the age at first **birth**.
- 3. Increase in the nonmarital fertility.

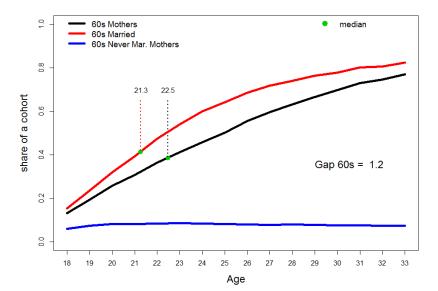
My Paper:

- 1. Propose a unified approach of studying the three trends.
- 2. Build a model based on the interaction of the established mechanisms with the observed changes in income dynamics.
- 3. Establish the quantitative importance of the model.

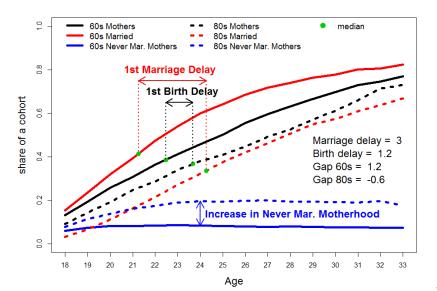
Unified Approach

- 1. Increase in the age at first marriage.
- 2. Increase in the age at first **birth**.
- 3. Increase in the nonmarital fertility.

1. & 2. \Rightarrow "The Gap" between timing of first birth and timing of first marriage decreases. \Rightarrow 3.


Unified Approach

- 1. Increase in the age at first marriage.
- 2. Increase in the age at first **birth**.
- 3. Increase in the nonmarital fertility.


1. & 2. \Rightarrow "The Gap" **between** timing of first **birth** and timing of first **marriage** decreases. \Rightarrow 3.

	1.Age 1st Mar	2.Age 1st Bir	Gap	3. % 1st births to NeverMar
NLSY79 (1960 b.y.)	21.3	22.5	1.2	21
NLSY97 (1980 b.y.)	24.3	23.7	-0.6	54

The Gap

Decrease in The Gap

Why Mind The Gap?

- Understanding the Gap \rightarrow better understanding of marriage and fertility timing trends.
- Decrease in the Gap increases share of the out-of-wedlock **first** births.

[...] increases in nonmarital fertility during the last 25 years have been driven largely by dramatic increases in nonmarital first births.

— Wu, Bumpass & Musick (2001)

 Decrease in the Gap is a forerunner of the nonmarital first births → implications for policy and demographic predictions.

Proposed Explanation

- Mechanism 1: Income inequality \rightarrow marriage timing.
- Mechanism 2: Income mobility/uncertainty \rightarrow fertility timing.
- Assumption 1: Marriage provides partial income insurance.
- 1. Increase in income inequality
 - a) Delays marriage (Mechanism 1)
 - b) Delays **birth** (Assumption $1 \rightarrow$ fewer marriages = fewer insured women \rightarrow Mechanism 2)
- 2. Decrease in income mobility/uncertainty
 - a) Delays marriage (Assumption 1)
 - b) Accelerates birth (Mechanism 2)
 - Hence, 1. delays both marriage and fertility
 - While 2. produces decrease in the Gap and increase in the single motherhood.

(related literature)

Assumption 1: Intuition & Literature

- Assumption 1: Marriage provides partial income insurance.
 - Marriage is a long-term commitment.
 - There is at least some degree of income pooling within a union
 - Spousal incomes are not perfectly correlated.
 - Empirics: Kotlikoff & Spivak (1981); Rosenzweig & Stark (1989); Ogaki & Zhang (2001); Hess (2004); Chami & Hess (2005)

- Mechanism 1: Income inequality affects marriage timing.
 - Male income inequality increased : Katz & Murphy (1991); Heathcote, Perri, & Violante (2010); Debacker et.al. (2013)
 - Mechanism & Empirics: Keeley (1974); Oppenheimer Kalmijn Lim (1997); Loughran (2002); Gould Paserman (2003); Coughlin & Drewianka (2011)
 - This paper: Extend Keeley's original intuition in a two-sided marriage search problem:

• Requirements: assumption 1 & finite horizon.

- Requirements: assumption 1 & finite horizon.
 - 1. Let income of top-earning men (T.E.) rise.

- Requirements: assumption 1 & finite horizon.
 - 1. Let income of top-earning men (T.E.) rise.
 - 2. T.E. become pickier.

- Requirements: assumption 1 & finite horizon.
 - 1. Let income of top-earning men (T.E.) rise.
 - 2. T.E. become pickier.
 - 3. More single T.E. tomorrow, \uparrow utility of marrying them.

- Requirements: assumption 1 & finite horizon.
 - 1. Let income of top-earning men (T.E.) rise.
 - 2. T.E. become pickier.
 - 3. More single T.E. tomorrow, \uparrow utility of marrying them.
 - 4. Women marriageable by T.E. delay marriage.

- Requirements: assumption 1 & finite horizon.
 - 1. Let income of top-earning men (T.E.) rise.
 - 2. T.E. become pickier.
 - 3. More single T.E. tomorrow, \uparrow utility of marrying them.
 - 4. Women marriageable by T.E. delay marriage.
 - 5. Men whose top-choice are those women delay marriage.

- Requirements: assumption 1 & finite horizon.
 - 1. Let income of top-earning men (T.E.) rise.
 - 2. T.E. become pickier.
 - 3. More single T.E. tomorrow, \uparrow utility of marrying them.
 - 4. Women marriageable by T.E. delay marriage.
 - 5. Men whose top-choice are those women delay marriage.
 - 6. repeat 2.-5.

- Mechanism 2: Income mobility affects fertility timing.
 - Income mobility/volatility decreased: Orzag & Director (2007); Sabelhaus & Song (2010); Guvenen et al. (2014)
 - Intuition & Empirics: Wong (2011); Sommer (2014) Kohler & Kohler (2002); Kreyenfeld (2005); Adserà (2004); Vandenbroucke (2012); Goldstein et al. (2013)
- Mechanism:

- Mechanism 2: Income mobility affects fertility timing.
 - Income mobility/volatility decreased: Orzag & Director (2007); Sabelhaus & Song (2010); Guvenen et al. (2014)
 - Intuition & Empirics: Wong (2011); Sommer (2014) Kohler & Kohler (2002); Kreyenfeld (2005); Adserà (2004); Vandenbroucke (2012); Goldstein et al. (2013)
- Mechanism:
 - 1. Child commitment to time and monetary payments.

- Mechanism 2: Income mobility affects fertility timing.
 - Income mobility/volatility decreased: Orzag & Director (2007); Sabelhaus & Song (2010); Guvenen et al. (2014)
 - Intuition & Empirics: Wong (2011); Sommer (2014) Kohler & Kohler (2002); Kreyenfeld (2005); Adserà (2004); Vandenbroucke (2012); Goldstein et al. (2013)
- Mechanism:
 - 1. Child commitment to time and monetary payments.
 - 2. $\exists \overline{w}$ s.t. time cost is binding.

- Mechanism 2: Income mobility affects fertility timing.
 - Income mobility/volatility decreased: Orzag & Director (2007); Sabelhaus & Song (2010); Guvenen et al. (2014)
 - Intuition & Empirics: Wong (2011); Sommer (2014) Kohler & Kohler (2002); Kreyenfeld (2005); Adserà (2004); Vandenbroucke (2012); Goldstein et al. (2013)
- Mechanism:
 - 1. Child commitment to time and monetary payments.
 - 2. $\exists \overline{w}$ s.t. time cost is binding.
 - 3. $\exists w$ s.t. monetary cost is binding.

- Mechanism 2: Income mobility affects fertility timing.
 - Income mobility/volatility decreased: Orzag & Director (2007); Sabelhaus & Song (2010); Guvenen et al. (2014)
 - Intuition & Empirics: Wong (2011); Sommer (2014) Kohler & Kohler (2002); Kreyenfeld (2005); Adserà (2004); Vandenbroucke (2012); Goldstein et al. (2013)
- Mechanism:
 - 1. Child commitment to time and monetary payments.
 - 2. $\exists \overline{w}$ s.t. time cost is binding.
 - 3. $\exists w$ s.t. monetary cost is binding.
 - 4. \uparrow Income Mobility / Uncertainty / Volatility $\equiv \uparrow Pr(w' \notin [\underline{w}, \overline{w}] | w \in [\underline{w}, \overline{w}]])$

Literature

- Regalia, Rios-Rull & Short (2008):
 - Objective: explain increasing out-of-wedlock fertility.
 - $\begin{array}{ll} \blacktriangleright & \textit{Mechanism:} & \downarrow \mbox{ gender-wage gap} \rightarrow \mbox{ delays marriage} \rightarrow \\ \uparrow \mbox{ out-of-wedlock fertility.} \end{array}$
 - Issue: ↓ gender-wage gap → delays marriage
 & ↑ cost of fertility (authors assume semi-endogenous fertility).
 - ► This paper:
 - endogenous fertility.
 - add effects of the interaction of inequality and mobility to produce decrease in the Gap.

Literature

- Regalia, Rios-Rull & Short (2008):
 - This paper:
 - endogenous fertility.

- add effects of the interaction of inequality and volatility to produce decrease in the Gap.

- Santos & Weiss (2016):
 - Objective: explain delay in marriage and fertility.
 - *Mechanism:* \uparrow volatility \rightarrow delay births \rightarrow delay marriages.
 - Used PSID, where volatility increases : Gottschalk, Moffitt, Katz & Dickens (1994); Shin & Solon (2011); Moffitt & Gottschalk (2012).
 - Issue: Given decrease in volatility, model's predictions are counterfactual

Model-Related Literature

- Model: Aiyagari, Greenwood & Guner (2000); Greenwood, Guner & Knowles (2002); Caucutt, Guner & Knowles (2002).
- This paper:
 - Non-parametric income process similar to De Nardi, Fella & Pardo (2016) allows to decrease the state-space and computation intensity.
 - Model can handle higher level of heterogeneity, with more periods. Simpler calibration without utility shocks and "blisses".
 - Can check for uniqueness of the equilibrium.

1. Document that the Gap decrease is relevant to all major socio-economic groups of US women and is robust to other accounting exercises.

- 1. Document the Gap decrease phenomenon.
- 2. Show how studying marriage, fertility and single motherhood as parts of the Gap lead to a better understanding of the trends.

- 1. Document the phenomenon.
- 2. Improves understanding of other demographic trends.
- 3. Propose an explanatory mechanism based on changes in income inequality and mobility.

- 1. Document the phenomenon.
- 2. Improves understanding of other demographic trends.
- 3. Propose an explanatory mechanism.
- 4. Simple examples to illustrate mechanisms 1 and 2.

- 1. Document the phenomenon.
- 2. Improves understanding of other demographic trends.
- 3. Propose an explanatory mechanism.
- 4. Simple examples to illustrate mechanisms 1 and 2.
- 5. Quantitative model

- 1. Document the phenomenon.
- 2. Improves understanding of other demographic trends.
- 3. Propose an explanatory mechanism.
- 4. Simple examples to illustrate mechanisms 1 and 2.
- 5. Quantitative model
 - Build an equilibrium two-sided matching, life-cycle model with endogenous marriage and fertility decisions.

- 1. Document the phenomenon.
- 2. Improves understanding of other demographic trends.
- 3. Propose an explanatory mechanism.
- 4. Simple examples to illustrate mechanisms 1 and 2.
- 5. Quantitative model.
- 6. Calibration & Simulation

- 1. Document the phenomenon.
- 2. Improves understanding of other demographic trends.
- 3. Propose an explanatory mechanism.
- 4. Simple examples to illustrate mechanisms 1 and 2.
- 5. Quantitative model.
- 6. Calibration & Simulation
 - Calibrate the model to the NLSY 1960s cohort.

- 1. Document the phenomenon.
- 2. Improves understanding of other demographic trends.
- 3. Propose an explanatory mechanism.
- 4. Simple examples to illustrate mechanisms 1 and 2.
- 5. Quantitative model.
- 6. Calibration & Simulation
 - Calibrate the model to the NLSY 1960s cohort.
 - Simulation: measured change in inequality and mobility produces: 42 % and 40% of change in the timing of marriage and fertility between 60s and 80s cohorts.

Empirical Investigation: Is the Gap decrease a sub-group phenomenon?

	Gap 60s	Gap 80s	% 1st births to single 60s	% 1st births to single 80s
All women	1.20	-0.65	21	54
White, High-ed.	3.46	2.51	4	14
Black, High-ed.	-1.00	-2.26	48	74
White, Low-ed.	1.86	-0.55	15	56
Black, Low-ed.	-2.46	-4.46	71	88

(related literature) (means)

Empirical Investigation: single mothers & shotgun marriages.

Status at age 33	Gap 60s	Gap 80s	% 1st births to single 60s	% 1st births to single 80s
Married & Mothers	1.76	0.05	9.6	14.5
Married & Mothers median gap	0.64	0.05		
delete shotgun observations	2.30	-0.90	31	67

(related literature) (means)

Quantitative Model

- Finite horizon (all agents live for T periods)
- Two-sided marriage matching
- Distribution of married and single agents evolves endogenously
- ► There are two types of agents {m, f}. Genders differ in their income process, and only females can give birth
- There is no saving/no borrowing
- Bargaining powers of spouses are exogenously set to be equal

Income Process

- Income process: similar to De Nardi, Fella & Pardo (2016)
- $\bullet\,$ For every age $\times\,$ gender group, compute mean earnings in N quantiles.
- So every period an agent can have one of N wages: $w \in \{w_{t,1}^g, ..., w_{t,N}^g\}$
- For every age \times gender compute transition matrices

	$w_{t+1,1}^g$		$w_{t+1,2}^{g}$
$w_{t,1}^g$	$\pi^{g}_{t,1,1}$		$\pi^{g}_{t,1,\textit{N}}$
:	:	·	÷
$w_{t,N}^g$	$\pi^{g}_{t,\textit{N},1}$		$\pi^{g}_{t,N,N}$

Model Timing

- 1. Agent observes wage realization.
- 2. Single agents of the opposite gender are randomly matched. If both agree to marry they continue as a couple. There is no divorce.
- 3. Single males choose consumption. Couples and single females make fertility and consumption choices.

Marriage Matching Probabilities

- Let $\mu_{t,i} \in [0, 1/N]$ be measure of single males of wage-type iand $\mathcal{M}_t \equiv \{\mu_{t,i}\}_{i=1}^N$.
- Single females are heterogeneous in wages and in stock of previous children K_{t-1}. Let measures of single female types be denoted as φ_{t,i}(K_{t-1}) ∈ [0, 1/N] and φ_t ≡ {{φ_{t,i}(K_{t-1})}^N_{i=1}}^{t-1}_{k=0} ≡ {φ_{t,j}}^{N×t}_{j=1}
- After each marriage market, distributions of singles are updated.

$$\hat{\mu}_{t,i} = \mu_{t,i} - \sum_{j} \mu_{t,i} \phi_{t,j} \mathcal{I}(w_{t,j}^{f}, N_{t-1,j}, w_{t,i}^{m}, \Phi_{t+1}, \mathcal{M}_{t+1})$$

where $\mathcal{I}(w_{t,j}^f, N_{t-1,j}, w_{t,i}^m, \Phi_{t+1}, \mathcal{M}_{t+1})$ – marriage indicator function.

Then {\$\u03c6\$\u03c6,i,i\$} evolves according to the earnings transition matrix.

Single Male Problem

- Let M_t(w^m_t, Φ_{t+1}) be value of being single male after the marriage phase at period t.
- Value of being single male **before** the marriage phase:

$$EM_{t}(w_{t}^{m}, \Phi_{t}) = \sum_{j} \phi_{t,j} \mathcal{I}(w_{t,j}^{f}, K_{t-1,j}, w_{t}^{m}) MC_{t}(w_{t,j}^{f}, K_{t-1,j}, w_{t}^{m}) + \underbrace{\sum_{j} \phi_{t,j} \left(1 - \mathcal{I}(w_{t,j}^{f}, K_{t-1,j}, w_{t}^{m})\right) M_{t}(w_{t}^{m}, \Phi_{t+1})}_{meet the "wrong" woman and continue as single} + \underbrace{\left(1 - \sum_{j} \phi_{t,j}\right) \times M_{t}(w_{t}^{m}, \Phi_{t+1})}_{meet nobody and continue as single}$$
• Male problem:

$$M_{t}(w_{t}^{m}, \Phi_{t}) = \max_{c} U(c) + \beta \mathbb{E}_{w_{t+1}^{m}} \left[EM_{t+1}(w_{t+1}^{m}, \Phi_{t+1})|w_{t}^{m}\right]$$
s.t. $c \leq w_{t}^{m}$

$$19/35$$

Single Female Problem

- Let F_t(w^m_t, K_t, M_{t+1}) be value of being single male after the marriage phase at period t.
- Value of being single male **before** the marriage phase:

$$EF_{t}(w_{t}^{f}, K_{t-1}, \mathcal{M}_{t}) = \sum_{i} \mu_{t,i} \mathcal{I}(w_{t}^{f}, K_{t-1}, w_{t,i}^{m}) MC_{t}(w_{t}^{f}, K_{t-1}, w_{t,i}^{m}) + \sum_{i} \mu_{t,i} \left(1 - \mathcal{I}(w_{t}^{f}, K_{t-1}, w_{t,i}^{m}) \right) F_{t}(w_{t}^{f}, K_{t-1}) + \left(1 - \sum_{i} \mu_{t,i} \right) F_{t}(w_{t}^{f}, K_{t-1}).$$

• Female problem:

 $\begin{aligned} F_t(w_t^m, K_{t-1}, \mathcal{M}_t) &= \max_{c, k_t \in \{0, 1\}} U(c) + V(K_t) + \mathbb{E}_{w_{t+1}^f} \left[EF_{t+1}(w_{t+1}^f, K_t, \mathcal{M}_{t+1}) | w_t^f \right] \\ s.t. \quad c + \eta_m K_t &\leq (1 - \eta_\tau K_t) w_t^f, \\ K_t &= K_{t-1} + k_t \end{aligned}$

where η_m, η_τ – monetary and time costs per child

Married Couple's Problem

• Value of life of each spouse is:

$$\begin{aligned} MC_t(w_t^f, K_{t-1}, w_t^m) &= \max_{c, k_t \in \{0, 1\}} U\left(\frac{c}{1+\gamma}\right) + V(K_t) \\ &+ \beta \mathbb{E}_{w_{t+1}^f, w_{t+1}^m} \left[MC_{t+1}(w_{t+1}^f, K_t, w_{t+1}^m) | w_t^f, w_t^m \right], \end{aligned}$$

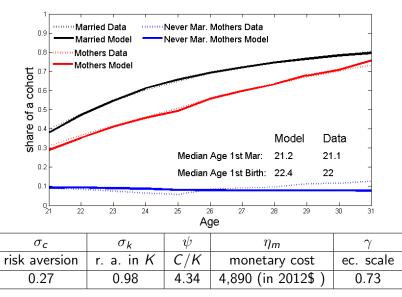
s.t.

$$c + \eta_m K_t \leq (1 - \alpha \eta_\tau^{MC} K_t) w_t^f + (1 - (1 - \alpha) \eta_\tau^{MC} K_t) w_t^m$$

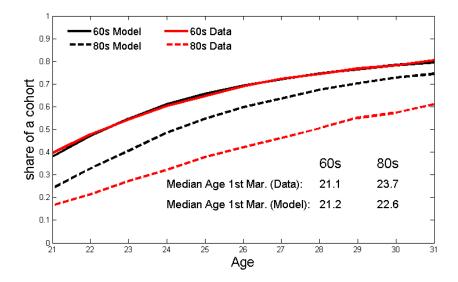
$$K_t = K_{t-1} + k_t.$$

where $\gamma \in [0, 1]$ – family consumption economies of scale. $\alpha \in [0, 1]$ – share of time that female spend on child rearing.

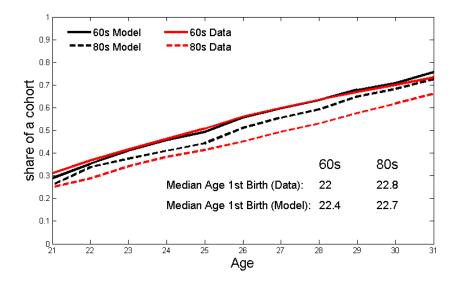
• Note that time cost η_{τ}^{MC} is bigger than η_{τ} for a single woman. This accounts for an overlap in time spent with a child.

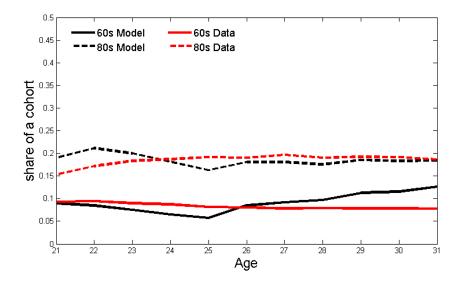

Equilibrium

- Fertility, consumption and marriage choices are optimal conditional on $\{\mathcal{M}_t\}_{t=1}^T, \{\boldsymbol{\Phi}_t\}_{t=1}^T$.
- $\{\mathcal{M}_t\}_{t=1}^T, \{\Phi_t\}_{t=1}^T$ are consistent with marriage and fertility choices.
- $\{\mathcal{M}_t\}_{t=1}^T, \{\Phi_t\}_{t=1}^T$ are solutions to the following fixed point problem:
 - For a fixed for a second second
 - Given marriage and single fertility decisions, {M_t}^T_{t=1}, {Φ_t}^T_{t=1},
 are updated for every period through the forward induction.

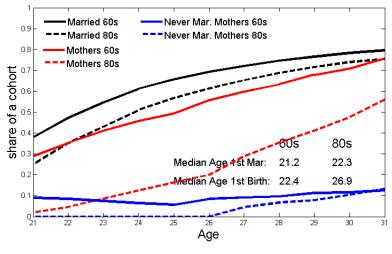

Calibration

- Time cost $\eta_{\tau} = 0.185$ Schoonbroodt (2016)
- Parenting time overlap $\eta_{\tau}^{mar} = 1.26\eta_{\tau}$ Folbre et al. (2005)
- Share of parenting time due to a wife α = 0.7 − Schoonbroodt (2016)
- Discounting $\beta = 0.98$ standard
- Income process own estimation of a 10-quantile process from the NLSY.


Fitting the Initial Cohort


Model Accounts for 42% of Change in Marriage

Model Accounts for 40% of Change in Fertility


Share of Never Married Mothers

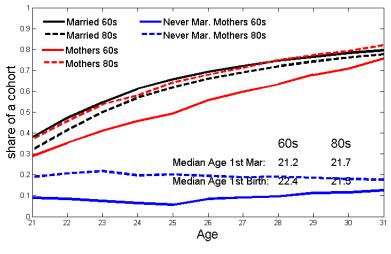
Counterfactual 1: If Only Inequality has Changed

- Experiment: only update wage arrays w_t^g but not transition matrices.
- 1. Increase in **income inequality**
 - a) Delays marriage (Mechanism 1)
 - b) Delays **birth** (Assumption $1 \rightarrow$ fewer marriages = fewer insured women \rightarrow Mechanism 2)
- 2. Decrease in income mobility/uncertainty
 - a) Delays marriage (Assumption 1)
 - b) Accelerates birth (Mechanism 2)
 - Prediction: increase in inequality = increase in volatility (keeping transition matrix constant)
 - \Rightarrow Delay in birth > Delay in marriage.
 - \Rightarrow Decrease in single motherhood.

Counterfactual 1: If Only Inequality has Changed

("elasticity")

Counterfactual 2: If Only Mobility has Changed


- Experiment: only update transition matrices Π_t^g but not wage arrays w_t^g .
- 1. Increase in income inequality
 - a) Delays marriage (Mechanism 1)
 - b) Delays birth (Assumption 1 \rightarrow fewer marriages = fewer insured women \rightarrow Mechanism 2)

2. Decrease in income mobility/uncertainty

- a) Delays marriage (Assumption 1)
- b) Accelerates **birth** (Mechanism 2)
- Prediction:

Delay in marriage, acceleration of births, increase in single motherhood.

Counterfactual 2: If Only Mobility has Changed

("elasticity")

Conclusion

- 1. The Gap perspective:
 - Marriage, fertility and single-motherhood need to be studied together.
 - Decrease in the Gap is not a sub-group phenomenon.
- 2. Mechanism:
 - Changes in inequality and income mobility are able to produce decrease in the Gap.
 - Model can account for 42% and 40% of change in the timing of marriage and fertility
- 3. Secondary contributions:
 - Explain the intuition behind the income inequality marriage delay relationship in a two-sided framework.
 - Provide an algorithm which is able to establish uniqueness of such type of the equilibrium.
 - Introduction of the non-parametric income process allows to improve applicability and tractability of this type of models.

Discussion

Better understanding of demographic trends is important:

- Out-of-Wedlock childbearing:
 - ▶ Health: Waldfogel et. al. (2010)
 - Human capital formation: Mclanahan & Sandefur (2009)
- Marriage:
 - Economies of scale: Browning, Chiappori & Lewbel (2013)
 - Savings behavior: Knoll, Tamborini & Whitman (2012)
 - Home ownership: Fisher & Gervais (2011)

Future Work & Policy Implications

- Decrease in the Gap is relevant to all major groups of women - social policy implications.
- Study the long run (overlapping generations) equilibrium of the model. [need to allow child quality investment]
 - Study inter-generational evolution of inequality.
 - Policy implications effects of policies on the balanced growth path. [e.g. education policies, redistributive policies]
 - Quantitative evaluations of redistributional policies.

THANK YOU!