

The Effect of Population Ageing on Pension System in Belarus

Kateryna Bornukova (BEROC) Katerina Lisenkova (NIESR)

Fifth Annual Conference in Economics and Finance BEROC Minsk, June 2, 2015

Financial support from the Economic and Social Research Council under the grant: "A dynamic multiregional OLG-CGE model for the study of population ageing in the UK" is gratefully acknowledged.

Introduction

- Model
- Results
- Conclusions

- Belarus has a relatively generous pension system
 - State pension age 55/60 for females/males
 - Contributions: 1% by employee and 28% by employer – 22.7% of total cost of labour
 - Replacement rate around 45-50%
- Belarus has a rapidly ageing population
- Maintaining pension system with its current configuration will become impossible in the future

Replacement rate (ratio of average pension to average wage)

NİAGE

Replacement rate, OECD countries, 2012

Pension age

	Statutory retirement age (Current Law)*
Armenia	63
Azerbaijan	58/63
Belarus	55/60
Bulgaria	60/63
Croatia	60/65
zech Republic	55-61/62.5
stonia	60.5/63
eorgia	60/65
ungary	62
azakhstan	58/63
(yrgyz Republic	58/63
atvia	62
ithuania	60/62.5
oldova	57/62
oland	60/65
omania	59/64
Russian Federation	55/60
Serbia	60/65
lovak Republic	59.5/62
lovenia	56.3/63
urkmenistan	57/62
Jkraine	55/60
Jzbekistan	55/60

.....

Old age dependency ratio*

......

* Population aged 65+ divided by population aged 20-64

Introduction

Model

Results

Conclusions

Structure of a CGE model

Overlapping generations structure

Main features of the model

- Closed economy
 - Interest rate reacts to population ageing
- One final good
 - Cobb-Douglas production function
- Demography:
 - 21 generations (0-4, ... 100+)
 - time-variable fertility rate
 - time/age-variable mortality rates
- Unintentional bequests
 - distributed via a perfect annuity market
- Age-specific private consumption
 - Hump-shaped
- Age-specific public consumption
 - Health and education

Household Utility Function

$$U = \frac{1}{1 - \theta} \sum_{k=4}^{20} \left\{ \left[\frac{1}{1 + \rho} \right]^k \Pi_{m=0}^k sr_{t+m,g+m} \left((C_{t+k,g+k})^{1 - \theta} \right) \right\} \qquad 0 < \theta < 1$$

Household Budget Constraint

$$HA_{t+1,g+1} = \frac{1}{sr_{t,g}} \left[Y_{t,g} + (1+Ri_t)HA_{t,g} - C_{t,g} \right] \qquad sr_{a,t} - \text{ conditional probability of survival from age } a \text{ to age } a+1$$

Euler Equation

$$\frac{C_{t+1,g+1}}{C_{t,g}} = \left(\frac{1+r_{t+1}}{1+\rho}\right)^{1/\theta}$$

Household problem is qualification- and origin-specific

Government

- Revenues
 - Income tax
 - Consumption tax
 - Capital tax
 - Pension contributions
- Expenditures
 - Government spending
 - Fixed share of GDP
 - Pensions
 - Various scenarios

- The model is calibrated on 2013 SAM constructed from
 - National accounts
 - Government budget
 - Pension Fund balance
- Labour market characteristics from the LFS
 - Employment rates
 - Earnings profiles

Employment rates

Earnings profiles

- Introduction
- Model

Simulations and Results

Conclusions

UN population projections – medium scenario

- UN medium population projection
- TFP growth 2% per year
- Pensions indexed
 - to wages
 - to GDP
- Taxation increases to close government budget constraint

Output and factors of production

- Change funding (contribution rate)
- Change spending (replacement rate)
- Change pension age
 - Increase state pension age for women to 60 by 2025
 - Increase state pension age for both sexes to 65 by 2035

Pension payments as a % of GDP

Taxation level % of GDP, pp difference

Contribution rate

Replacement rate

Employment rates in different pension age scenarios

Old age dependency ratios in different pension age scenarios

NIAG

Taxation level as a % of GDP, pp difference

- Introduction
- The model
- Results

Conclusions

