Screening as a Unified Theory of Delinquency, Renegotiation, and Bankruptcy

Natalia Kovrijnykh¹ and Igor Livshits²

 $$^1\ensuremath{\mathrm{Arizona}}\xspace$ State University $$^2\ensuremath{\mathrm{University}}\xspace$ of Western Ontario and BEROC

April 2014

- - (Stages of) Default in consumer credit
 - $\circ~$ Delinquency: payments are overdue by at least 60 days
 - Some, but not all, delinquent borrowers end up in bankruptcy
 - Lenders sometimes renegotiate with delinquent borrowers to prevent bankruptcy and achieve debt settlement
 - There is no (simple) theory that models all these stages
 - $\circ~$ More on related literature later

What We Do

- Construct a very simple model where delinquency, renegotiation, and bankruptcy all occur in equilibrium
- Key model ingredient: adverse selection
 - $\circ~$ A borrower's bank ruptcy cost is her private information
 - Lenders often do not observe personal characteristics that affect a borrower's willingness to pay
- All three phenomena are generated by a simple screening mechanism
- They match the default stages that we think of in reality
 - $\circ~$ Some borrowers choose not to repay \rightarrow become delinquent
 - $\circ~$ Lenders renegotiate with some delinquent borrowers \rightarrow debt settlement
 - In absence of renegotiation, delinquency leads to bankruptcy

- Consumer debt literature
 - Focuses on bankruptcy, but largely abstracts from delinquency, and especially renegotiation
- Sovereign debt literature
 - Focuses on default and (sometimes) renegotiation
 - Seldom distinguishes between 'delinquency' and 'bankruptcy'
 (~ 'autarky'); default usually means one of the two
- In terms of the modeling approach
 - Our paper is related to the literature on optimal mechanisms of selling a good to heterogeneous risk-averse buyers

What We Do (Continued)

- Comparative Statics
 - Reasonable predictions about how the bankruptcy rate varies with debt and income
- Application: Government intervention in debt restructuring
 - $\circ\,$ Example: Mortgage Modification Program

Environment

- One lender, one borrower, one period
- Borrower
 - Risk averse, has utility function u(c), u' > 0, u'' < 0
 - \circ Has income I
 - $\circ~$ Owes debt to the lender
 - For simplicity, we abstract from where debt comes from
 - Has the option of declaring bankruptcy
 - Idiosyncratic cost of bankruptcy, $\theta \in \{\theta_L, \theta_H\}$, unobservable to the lender, $\Pr\{\theta = \theta_H\} = \gamma$
 - Bankruptcy yields $v(I, \theta)$ to the borrower, zero to the lender
 - $v(I, \theta_L) > v(I, \theta_H)$ for any I
- Lender
 - Risk neutral
 - Demands repayment

- Designed by the lender
- Deterministic contract: repayment ${\cal R}$
 - A borrower of type *i* accepts if and only if $u(I R) \ge v(I, \theta_i)$
- Two possible equilibria with deterministic contracts:
 - Offer R_L : $u(I R_L) = v(I, \theta_L) \Rightarrow$ attract both types (pooling)
 - Offer R_H : $u(I R_H) = v(I, \theta_H) \Rightarrow$ attract only high type (exclusion)
 - $\circ~$ Which contract yields higher profits to the lender depends on γ
- The lender can potentially do better by offering a pair of *random* contracts (screening)

Pair of contracts: R_1 , (R_2, p)

- Deterministic contract (for the high type): R_1
- Random contract (for the low type): $R_2 < R_1$ with probability p, bankruptcy with probability 1-p
- To maximize the lender's profits:

•
$$R_2 = R_L$$
 and $R_1 = R_S < R_H$, where (given p) R_S solves

$$u(I - R_S) = p \underbrace{u(I - R_L)}_{=v(I,\theta_L)} + (1 - p) \underbrace{u(I - R_H)}_{=v(I,\theta_H)}$$

- Low type is indifferent b/w accepting (R_L, p) and bankruptcy
- High type is indifferent b/w accepting R_S and (R_L, p)
- Note: p < 1 only to keep the high type from accepting the contract meant for the low type

Interpretation of a Screening Contract

The lender

- Offers initial repayment
 - High cost borrowers accept it, low cost borrowers do not consider these borrowers **delinquent**
- **Renegotiates** with delinquent borrowers offers a lower repayment but only with some probability
 - The fraction of borrowers with whom the lender does not renegotiate declare **bankruptcy**
 - The others reach debt settlement

The Lender's Problem

$$\max_{p \in [0,1]} \pi(p) \equiv \gamma R_S(p) + (1-\gamma)pR_L,$$

where $R_S(p)$ solves

$$u(I - R_S) = pu(I - R_L) + (1 - p)u(I - R_H)$$

• Note: p = 1 (p = 0) corresponds to pooling (exclusion)

• Denote
$$p^* = \arg \max_p \pi(p)$$

Equilibrium Contract

Claim 1

- 1. If the borrower is risk neutral, then $p^* \in \{0, 1\}$, i.e., screening is always dominated by either pooling or exclusion
- 2. If the borrower is risk averse, then $p^* \in (0, 1)$ for some parameter values
 - In particular, if the lender is indifferent between pooling and exclusion, then the equilibrium contract is a screening one

Introduce Debt Level:

- $\bullet\,$ A borrower owes debt D to the incumbent lender
 - $\circ~$ The lender cannot ask for a repayment in excess of D
- Previously analyzed "debt overhang" case whenever $D > R_S^*$
- The lender's problem is now

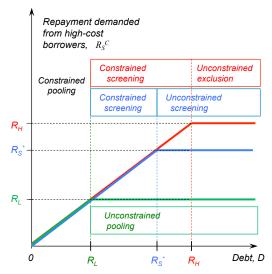
$$\max_{p \in [0,1], R_S^D} \gamma R_S^D + (1-\gamma) p R_L^D,$$

subject to

$$u(I - R_S^D) \ge pu(I - R_L^D) + (1 - p)u(I - R_H)$$

and

$$R_S^D \leqslant D$$

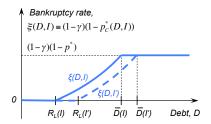

where
$$R_L^D = \min\{R_L, D\}$$

Optimal Contract in the General Case


Proposition

- (i) If $D \ge R_S^*$, then there is debt overhang and the lender offers $(R_S^*, (R_L, p^*))$ that solves the unconstrained problem.
- (ii) If $D \leq R_L$, then the lender demands repayment D, and all borrowers fully repay their debt.
- (iii) If $D \in (R_L, R_S^*)$, then the lender performs screening: offers $R_S^D = D$ to the high-cost borrowers and R_L with probability $p_D^* > p^*$ to the low-cost borrowers.

Equilibrium Contracts Under Competition


Equilibrium Under Competition

Conclusions

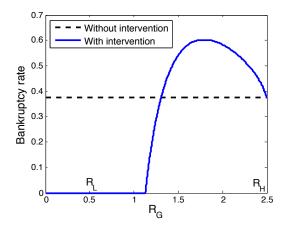
Bankruptcy Rate: Comparative Statics

- Bankruptcy rate ξ is increasing in debt, $D~\checkmark$
- Comparative statics of ξ with respect to I• Example: $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}, \quad v(I,\theta) = u((1-\theta)I)$
- Within monopolistic screening, ξ is constant in I
- But debt threshold for monopoly is increasing in I
 - Competition is more likely to be relevant for higher I, and the bankruptcy rate is lower with competition ✓

Government Intervention in Mortgage Market

- Modeling private sector debt restructuring is crucial for understanding the effects of government intervention
- Example: Mortgage Modification Program
 - $\circ~{\rm HAMP}$ (Home Affordable Mortgage Program) in 2009
 - Aimed at lowering the foreclosure rate (and the deadweight loss associated with it)
- We will analyze effects of such a program through the lens of our model
 - Intervention may have unintended consequences if its design is naive and ignores the effect on private restructuring

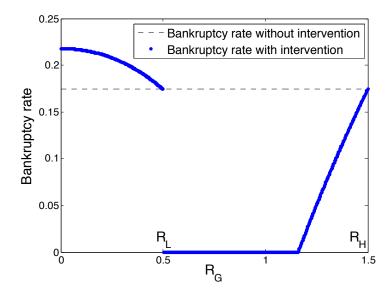
Government Intervention in the Model


- Government intervention in our model:
 - Government steps in if bankruptcy (foreclosure) is initiated
 - Offers repayment R_G with probability p_G
 - If accepted, the repayment is transferred to the lender
- Suppose the laissez-faire outcome is unconstrained screening
- Key insights:
 - 1. The policy can be effective,
 - even when government appears to be inactive
 - 2. The policy can have the opposite effect from the one intended
 - lead to more fore closures in equilibrium

Note: In our model, intervention is never Pareto improving, since equilibrium is constrained Pareto efficient (the government is subject to the same frictions)

Deterministic Government Intervention $(p_G = 1)$

- If $R_G \ge R_H$, the intervention is irrelevant
 - $\circ~$ Outcomes same as in $\mathit{laissez-faire}$ benchmark
- If $R_G \leq R_L$, the intervention is completely successful
 - $\circ~$ Intervention is similar to lowering debt level below R_L
 - \circ induces "constrained pooling": the lender demands R_G , everyone repays (no delinquencies, no foreclosures)
- If $R_G \in (R_L, R_H)$, the intervention
 - $\circ~$ may be completely successful while appearing irrelevant
 - R_G slightly greater R_L induce pooling
 - lender demands $R_L < R_G$, no foreclosures
 - $\circ~$ or may "backfire" increase for eclosure rate
 - when R_H is close to I, small probability of bankruptcy is enough to induce high-cost borrowers to pay
 - intervention is akin to lowering R_H


Government Intervention: Numerical Example

Random Intervention: Additional Insights

- 1. The intervention can be ineffective although the government is busy preventing foreclosures
 - Consider $R_G = R_L$ and $p_G \leq p^*$
 - $\circ~$ The lender adjusts p to offset the intervention
 - The resulting foreclosure rate is same as laissez-faire
- 2. The program can backfire although the government's offer is accepted when offered
 - Consider $R_G < R_L$ and $p_G \leq p^*$
 - Affects the lender's ability to extract repayment not just from the high type, but also from the low type
 - As screening (renegotiation) becomes more costly, the lender may decrease p so much that
 - $\circ~$ the resulting foreclosure rate increases instead of decreasing

Government Intervention: Numerical Example

- We constructed a simple model with adverse selection
- Delinquency, renegotiation, and bankruptcy all occur in equilibrium as a result of a simple screening mechanism
- Our model generates reasonable comparative statics with respect to debt and income
- Explicitly modeling private debt restructuring is crucial for analyzing the effects of government intervention

Government Intervention: Numerical Example

